Автор работы: Пользователь скрыл имя, 04 Декабря 2017 в 19:47, реферат
В области ИТ управления существуют два взаимно дополняющих друг друга направления:
технологии, ориентированные на оперативную (транзакционную) обработку данных. Эти технологии лежат в основе КИСУ, предназначенных для оперативной обработки данных. Называются подобные системы — OLTP (online transaction processing) системы;
технологии, ориентированные на анализ данных и принятие решений. Эти технологии лежат в основе КИСУ, предназначенных для анализа накопленных данных. Называются подобные системы — OLAP (online analytical processing) системы.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ
УО “ПОЛЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ”
Кафедра банковского дела
Управляемая самостоятельная работа
по дисциплине “ Информационные технологии в банковской сфере ”
на тему “Сравнительная характеристика наиболее распространенных платформ, на которых осуществляется построение ХД в банках”
Студент
ФБД, 4 курс, гр. 14ИТ-1 Е.Е. Запасник
Преподаватель
ПИНСК 2017
В области ИТ управления существуют два взаимно дополняющих друг друга направления:
OLAP-системы
Основное назначение OLAP-систем: динамический многомерный анализ исторических и текущих данных, стабильных во времени; анализ тенденций; моделирование и прогнозирование будущего. Такие системы, как правило, ориентированы на обработку произвольных, заранее не регламентированных запросов. В качестве основных характеристик этих систем можно отметить следующие:
Термин OLAP часто отождествляют с системами поддержки принятия решений DSS (Decision Support Systems). А в качестве синонима термина «решения» используют Data Warehousing — «хранилища (склады) данных». Под этим понимается набор организационных решений, программных и аппаратных средств для обеспечения аналитиков информацией на основе данных из систем обработки транзакций нижнего уровня и других источников.
«Склады данных» позволяют обрабатывать данные, накопленные за длительные периоды времени. Эти данные являются разнородными (и не обязательно структурированными). Для «складов данных» присущ многомерный характер запросов. Огромные объемы данных, сложность структуры как данных, так и запросов — все это требует использования специальных методов доступа к информации.
В других источниках понятие Системы Поддержки Принятия Решений (СППР) считается более широким. Хранилища данных и средства оперативной аналитической обработки могут служить одними из компонентов архитектуры СППР.
OLAP всегда включает в
себя интерактивную обработку
запросов и последующий
Иногда различают OLAP в узком смысле — как системы, которые обеспечивают только выборку данных в различных разрезах, и OLAP в широком смысле, или просто OLAP, включающие в себя:
Каждый из этих типов систем требует специфической организации данных, а также специальных программных средств, обеспечивающих эффективное выполнение стоящих задач.
OLAP-средства обеспечивают
проведение анализа деловой
OLAP-системы можно разбить на три класса.
1 класс. Наиболее сложными и дорогими из них являются основанные на патентованных технологиях серверы многомерных БД. Эти системы обеспечивают полный цикл OLAP-обработки и либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для анализа данных внешние программы работы с электронными таблицами. Продукты этого класса в наибольшей степени соответствуют условиям применения в рамках крупных информационных хранилищ. Для их обслуживания требуется целый штат сотрудников, занимающихся как установкой и сопровождением системы, так и формированием представлений данных для конечных пользователей. Обычно подобные пакеты довольно дороги. В качестве примеров продуктов этого класса можно привести систему Essbase корпорации Arbor Software, Express фирмы IRI (входящей теперь в состав Oracle), Lightship производства компании Pilot Software и др.
2 класс. OLAP-систем —
ROLAP-средства реализуют
функции поддержки принятия
Такие программные продукты должны отвечать ряду требований, в частности:
3 класс. OLAP-систем —
OLTP-системы
OLTP-системы, являясь высокоэффективным средством реализации оперативной обработки, оказались малопригодны для задач аналитической обработки. Это вызвано следующим.
Задачи, решаемые OLTP- и OLAP-системами
Характеристика |
OLTP |
OLAP |
Частота обновления данных |
Высокая частота, небольшие «порции» |
Малая частота, большие «порции» |
Источники данных |
В основном внутренние |
По отношению к аналитической системе, в основном внешние |
Возраст данных |
Текущие (несколько месяцев) |
Исторически (за годы) и прогнозируемые |
Уровень агрегации данных |
Детализированные данные |
В основном агрегированные данные |
Возможности аналитических операций |
Регламентированные отчеты |
Последовательность интерактивных отчетов, динамическое изменение уровней агрегаций и срезов данных |
Назначение системы |
Фиксация, оперативный поиск и обработка данных, регламентированная аналитическая обработка |
Работа с историческими данными, аналитическая обработка, прогнозирование, моделирование |
Сравнение OLTP и OLAP
Характеристика |
OLTP |
OLAP |
Преобладающие операции |
Ввод данных, поиск |
Анализ данных |
Характер запросов |
Много простых транзакций |
Сложные транзакции |
Хранимые данные |
Оперативные, детализированные |
охватывающие большой период времени, агрегированные |
Вид деятельности |
Оперативная, тактическая |
Аналитическая, стратегическая |
Тип данных |
Структурированные |
Разнотипные |