Системы счисления, используемые в вычислительной технике. Перевод чисел из одной системы в другую

Автор работы: Пользователь скрыл имя, 24 Декабря 2009 в 16:49, Не определен

Описание работы

Контрольная работа

Файлы: 1 файл

Вариант 17.doc

— 260.00 Кб (Скачать файл)

СОДЕРЖАНИЕ 

1. Системы счисления,  используемые в вычислительной  технике.  Перевод чисел из  одной системы в другую………………………………………………………………………………..2 

2. Структурная  схема персонального компьютера.  Охарактеризовать основные составные  части ПК………………………………………………………………………………………….4 

3.OC Unix. Отличительные особенности и возможности. Разновидности…………………10 

4. Интегрированные  пакеты программ. Общие принципы  построения. Типичный состав. Примеры………………………………………………………………………………………...16 

5.Что такое  протокол коммуникации? Как передаются данные в компьютерных сетях?............................................................................................................................................18 

Список литературы……………………………………………………………………………..21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Системы счисления,  используемые в  вычислительной технике.  Перевод чисел  из одной системы  в другую 

     Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимнооднозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

     В зависимости от способа изображения чисел с помощью цифр системы счисления делятся на позиционные и непозиционные.

     В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число. Цифры в непозиционных системах счисления соответствуют некоторым фиксированным числам.    Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. В вычислительной технике непозиционные системы не применяются.

     Систему счисления называют позиционной, если одна и та же цифра может принимать различные численные значения в зависимости от номера разряда этой цифры в совокупности цифр, представляющих заданное число. Пример такой системы - арабская десятичная система счисления.

     Количества и количественные составляющие, существующие реально могут отображаться различными способами. Основание позиционной системы счисления определяет ее название. В вычислительной технике применяются двоичная, восьмеричная, десятичная и шестнадцатеричная системы. В дальнейшем, чтобы явно указать используемую систему счисления, будем заключать число в скобки и в нижнем индексе указывать основание системы счисления. Каждой позиции в числе соответствует позиционный (разрядный) коэффициент или вес.

     В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

     Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

     Перевод чисел в десятичную систему осуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы.

Пример.

а) Перевести 10101101.1012"10" с.с.

     Здесь и в дальнейшем при одновременном использовании нескольких различных систем счисления основание системы к которой относится число будем указывать в виде нижнего индекса.

10101101.1012 = 127+ 026+ 125+ 024+ 123+ 122+ 021+ 120+ 12-1+ 02-2+ 12-3 =  173.62510

б) Перевести 703.048"10" с.с.

703.048 = 782+ 081+ 380+ 08-1+ 48-2 = 451.062510

в) Перевести  B2E.416"10" с.с.

B2E.416 =  11162+ 2161+ 14160+ 416-1 = 2862.2510

     Перевод целых десятичных чисел в недесятичную систему счисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего.

Пример.

а) Перевести 18110"8" с.с.

Результат: 18110 = 2658

б) Перевести 62210"16" с.с.

Результат: 62210 = 26E16

     Перевод правильных дробей из десятичной системы счисления в недесятичную.

Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основании той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Пример.

Перевести 0.312510"8" с.с.

Результат: 0.312510 = 0.248

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать  бесконечная (иногда периодическая) дробь. В этом случае количество знаков в  представлении дроби в новой  системе берется в зависимости  от требуемой точности.

Пример.

Перевести 0.6510"2" с.с. Точность 6 знаков.

Результат: 0.6510  0.10(1001)2

Для перевода неправильной десятичной дроби в систему счисления  с недесятичным основанием необходимо отдельно перевести целую часть  и отдельно дробную.

Пример.

Перевести 23.12510"2" с.с.1) Переведем целую часть: 2) Переведем дробную часть:

Таким образом:  2310 = 101112; 0.12510 = 0.0012.

Результат:  23.12510 = 10111.0012.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби - дробями в  любой системе счисления.

Пример.

а) Перевести 305.48"2" с.с.

б) Перевести 7B2.E16"2" с.с.

Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают следующим  образом: двигаясь от точки влево  и вправо, разбивают двоичное число  на группы по три (четыре) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.

Пример.

а) Перевести 1101111001.11012"8" с.с.

б) Перевести 11111111011.1001112"16" с.с.

     Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.

Пример.

Перевести 175.248"16" с.с.

Результат: 175.248 = 7D.516. 

2. Структурная схема персонального компьютера.  Охарактеризовать основные составные части ПК 

     Компьютер (англ. computer — вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. Персональный компьютер в своем составе содержит следующие основные элементы:

     - микропроцессор;

     - системную шину;

     - основную память;

     - внешнюю память;

     - порты ввода-вывода внешних устройств;

    - адаптеры устройств;

     - внешние устройства.

Структурная схема  персонального компьютера представлена на рисунке.

Типовая структурная схема  персонального компьютера 

  Микропроцессор

     Микропроцессор (МП) — центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией. В состав микропроцессора входят следующие устройства.

Устройство  управления (УУ), обеспечивающее выполнение следующих функций:

     - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций;

     - формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ;

     - формирует опорную последовательность импульсов, получаемую от генератора тактовых импульсов.

     Арифметико-логическое устройство (АЛУ) предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.      Интерфейс (interface) — совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие.

     Порт ввода-вывода (I/O port) — аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство.

     Генератор тактовых импульсов генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

     Промежуток времени между соседними импульсами определяет время одного такта работы машины, или просто, такт работы машины.

     Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина

     Системная шина — основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Системная шина включает в себя:

     - шину данных, содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

     - шину адреса, содержащую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

     - шину команд, содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;

     - шину питания, содержащую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

     Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная  память

     Основная память (ОП) предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройств (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

     ПЗУ (ROM — Read Only Memory) предназначено для хранения неизменяемой (постоянной) программной и справочной информации позволяет оперативно только считывать информацию, хранящуюся в нем (изменить информацию в ПЗУ нельзя).

Информация о работе Системы счисления, используемые в вычислительной технике. Перевод чисел из одной системы в другую