Автор работы: Пользователь скрыл имя, 05 Апреля 2015 в 11:41, реферат
Internet - глобальная компьютерная сеть, охватывающая весь мир. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.
Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределенного доступа к ресурсам.
Введение
Глава 1. Проблемы защиты информации
Глава 2. Понятие о несимметричном шифровании информации
Глава 3. Принцип достаточности защиты
3.1 Программные атаки
3.2 Вредоносное программное обеспечение
3.3 Классификация мер обеспечения безопасности КС
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
Бирский филиал
«Башкирский государственный университет»
Факультет биологии и химии
Реферат
на тему:
«Система защиты информации в Интернете»
Бирск-2013
Содержание.
Введение
Глава 1. Проблемы защиты информации
Глава 2. Понятие о несимметричном шифровании информации
Глава 3. Принцип достаточности защиты
3.1 Программные атаки
3.2 Вредоносное программное обеспечение
3.3 Классификация мер обеспечения безопасности КС
Введение
Internet - глобальная компьютерная сеть, охватывающая весь мир. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.
Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределенного доступа к ресурсам. Около двух лет назад были созданы оболочки, поддерживающие функции сетевого поиска и доступа к распределенным информационным ресурсам, электронным архивам.
Internet, служивший когда-то исключительно исследовательским и учебным группам, чьи интересы простирались вплоть до доступа к суперкомпьютерам, становится все более популярной в деловом мире.
Компании соблазняют быстрота, дешевая глобальная связь, удобство для проведения совместных работ, доступные программы, уникальная база данных сети Internet. Они рассматривают глобальную сеть как дополнение к своим собственным локальной сетям.
Фактически Internet состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям и предприятиям, связанных между собой различными линиями связи. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины, которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т.п. В архивах свободного доступа сети Internet можно найти информацию практически по всем сферам человеческой деятельности, начиная с новых научных открытий до прогноза погоды на завтра.
Кроме того, Internet предоставляет уникальные возможности дешевой, надежной и конфиденциальной глобальной связи по всему миру. Это оказывается очень удобным для фирм имеющих свои филиалы по всему миру, транснациональных корпораций и структур управления.
Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек.
В настоящее время Internet испытывает период подъема, во многом благодаря активной поддержке со стороны правительств европейских стран и США.
Однако, государственное финансирование - лишь небольшая часть поступающих средств, т.к. все более заметной становится "коммерцизация" сети (80-90% средств поступает из частного сектора).
Цель работы: изучить виды защиты информации в Интернете, терминологию в данной предметной области.
Internet и информационная безопасность несовместны по самой природе Internet. Как известно, чем проще доступ в Сеть, тем хуже ее информационная безопасность, поэтому с полным основанием можно сказать, что изначальная простота доступа в Internet - хуже воровства, так как пользователь может даже и не узнать, что у него были скопированы - файлы и программы, не говоря уже о возможности их порчи и корректировки.
Платой за пользование Internet является всеобщее снижение информационной безопасности, поэтому для предотвращения несанкционированного доступа к своим компьютерам все корпоративные и ведомственные сети, а также предприятия, использующие технологию intranet, ставят фильтры (fire-wall) между внутренней сетью и Internet, что фактически означает выход из единого адресного пространства. Еще большую безопасность даст отход от протокола TCP/IP и доступ в Internet через шлюзы.
Этот переход можно осуществлять одновременно с процессом построения всемирной информационной сети общего пользования, на базе использования сетевых компьютеров, которые с помощью сетевой карты 10Base-T и кабельного модема обеспечивают высокоскоростной доступ (10 Мбит/с) к локальному Web- серверу через сеть кабельного телевидения.
Для решения этих и других вопросов при переходе к новой архитектуре Internet нужно предусмотреть следующее:
Во-первых, ликвидировать физическую связь между будущей Internet (которая превратится во Всемирную информационную сеть общего пользования) и корпоративными и ведомственными сетями, сохранив между ними лишь информационную связь через систему World Wide Web.
Во-вторых, заменить маршрутизаторы на коммутаторы, исключив обработку в узлах IP-протокола и заменив его на режим трансляции кадров Ethernet, при котором процесс коммутации сводится к простой операции сравнения MAC- адресов.
В-третьих, перейти в новое единое адресное пространство на базе физических адресов доступа к среде передачи (MAC-уровень), привязанное к географическому расположению сети, и позволяющее в рамках 48-бит создать адреса для более чем 64 триллионов независимых узлов.
В области информации дилемма безопасности формулируется следующим образом: следует выбирать между защищенностью системы и ее открытостью. Правильнее, впрочем, говорить не о выборе, а о балансе, так как система, не обладающая свойством открытости, не может быть использована.
Глава 2. Понятие о несимметричном шифровании информации
Системам шифрования столько же лет, сколько письменному обмену информацией. Обычный подход состоит в том, что к документу применяется некий метод шифрования (назовем его ключом), после чего документ становится недоступен для чтения обычными средствами. Его может прочитать только тот, кто знает ключ, - только он может применить адекватный метод чтения. Аналогично происходит шифрование и ответного письма. Если в процессе обмена информацией для шифрования и чтения пользуются одним и тем же ключом, то такой криптографический процесс является симметричным.
Основной недостаток симметричного процесса заключается в том, что, прежде чем начать обмен информацией, надо выполнить передачу ключа, а для этого опять таки нужна защищенная связь, то есть проблема повторяется, хотя и на другом уровне.
Поэтому в настоящее время в Интернете используют несимметричные криптографические системы, основанные на использовании не одного, а двух ключей. Происходит это следующим образом. Компания для работы с клиентами создает два ключа: один – открытый (public - публичный) ключ, а другой закрытый (private - личный) ключ. На самом деле это как бы две “половинки” одного целого ключа, связанные друг с другом.
Ключи устроены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой (не той, которой оно было закодировано). Создав пару ключей, торговая компания широко распространяет публичный ключ (открытую половинку) и надежно сохраняет закрытый ключ (свою половинку)
Как публичный, так и закрытый ключ представляют собой некую кодовую последовательность. Публичный ключ компании может быть опубликован на ее сервере, откуда каждый желающий может его получить. Если клиент хочет сделать фирме заказ, он возьмет ее публичный ключ и с его помощью закодирует свое сообщение о заказе и данные о своей кредитной карте. После кодирования это сообщение может прочесть только владелец закрытого ключа. Никто из участников цепочки, по которой пересылается информация, не в состоянии это сделать. Даже сам отправитель не может прочитать собственное сообщение, хотя ему хорошо известно содержание. Лишь получатель сможет прочесть сообщение, поскольку только у него есть закрытый ключ, дополняющий использованный публичный ключ.
Если фирме надо будет отправить клиенту квитанцию о том, что заказ принят к исполнению, она закодирует ее своим закрытым ключом. Клиент сможет прочитать квитанцию, воспользовавшись имеющимся у него публичным ключом данной фирмы. Он может быть уверен, что квитанцию ему отправила именно эта фирма, и никто иной, поскольку никто иной доступа к закрытому ключу фирмы не имеет.
Защита публичным ключом (впрочем, как и большинство других видов защиты информации) не является абсолютно надежной. Дело в том, что поскольку каждый желающий может получить и использовать чей-то публичный ключ, то он может сколь угодно подробно изучить алгоритм работы механизма шифрования и пытаться установить метод расшифровки сообщения, то есть реконструировать закрытый ключ.
Тонкость заключается в том, что знание алгоритма еще не означает возможности провести реконструкцию ключа в разумно приемлемые сроки. Количество комбинаций, которое надо проверить при реконструкции закрытого ключа, не столь велико, однако защиту информации принято считать достаточной, если затраты на ее преодоление превышают ожидаемую ценность самой информации. В этом состоит принцип достаточности защиты, которым руководствуются при использовании несимметричных средств шифрования данных. Он предполагает, что защита не абсолютна, и приемы ее снятия известны, но она все же достаточна для того, чтобы сделать это мероприятие нецелесообразным. При появлении иных средств, позволяющих-таки получить зашифрованную информацию в разумные сроки, изменяют принцип работы алгоритма, и проблема повторяется на более высоком уровне.
Разумеется, не всегда реконструкцию закрытого ключа производят методами простого перебора комбинаций. Для этого существуют специальные методы, основанные на исследовании особенностей взаимодействия открытого ключа с определенными структурами данных. Область науки, посвященная этим исследованиям, называется криптанализом, а средняя продолжительность времени, необходимого для реконструкции закрытого ключа по его опубликованному открытому ключу, называется криптостойкостью алгоритма шифрования.
Для многих методов несимметричного шифрования криптостойкость, полученная в результате крипанализа, существенно отличается от величин, заявляемых разработчиками алгоритмов на основании теоретических оценок. Поэтому во многих странах вопрос применения алгоритмов шифрования данных находится в поле законодательного регулирования. В частности, в России к использованию в государственных и коммерческих организациях разрешены только те программные средства шифрования данных, которые прошли государственную сертификацию в административных органах, в частности, в Федеральном агентстве правительственной связи и информации при Президенте Российской Федерации (ФАПСИ).
3.1 Программные атаки
В качестве средства вывода сети из штатного режима эксплуатации может использоваться агрессивное потребление ресурсов (обычно - полосы пропускания сетей, вычислительных возможностей процессоров или оперативной памяти). По расположению источника угрозы такое потребление подразделяется на локальное и удаленное. При просчетах в конфигурации системы локальная программа способна практически монополизировать процессор и/или физическую память, сведя скорость выполнения других программ к нулю.
Простейший пример удаленного потребления ресурсов - атака, получившая наименование "SYN-наводнение" [5]. Она представляет собой попытку переполнить таблицу "полуоткрытых" TCP-соединений сервера (установление соединений начинается, но не заканчивается). Такая атака по меньшей мере затрудняет установление новых соединений со стороны легальных пользователей, то есть сервер выглядит как недоступный.
По отношению к атаке "Papa Smurf" уязвимы сети, воспринимающие ping-пакеты с широковещательными адресами. Ответы на такие пакеты "съедают" полосу пропускания.
Удаленное потребление ресурсов в последнее время проявляется в особенно опасной форме - как скоординированные распределенные атаки, когда на сервер с множества разных адресов с максимальной скоростью направляются вполне легальные запросы на соединение и/или обслуживание. Временем начала "моды" на подобные атаки можно считать февраль 2000 года, когда жертвами оказались несколько крупнейших систем электронной коммерции (точнее - владельцы и пользователи систем). Если имеет место архитектурный просчет в виде разбалансированности между пропускной способностью сети и производительностью сервера, то защититься от распределенных атак на доступность крайне трудно.
Для выведения систем из штатного режима эксплуатации могут использоваться уязвимые места в виде программных и аппаратных ошибок. Например, известная ошибка в процессоре Pentium I давала возможность локальному пользователю путем выполнения определенной команды "подвесить" компьютер, так что помогает только аппаратный RESET [9].