Проект защищенной беспроводной вычислительной сети

Автор работы: Пользователь скрыл имя, 13 Декабря 2010 в 20:29, курсовая работа

Описание работы

Построение сетей Wi-Fi (IEEE 802.11) беспроводной передачи данных в настоящее время широко востребовано за счет массы преимуществ. Среди основных достоинств данной технологии наиболее привлекательны следующие:

- низкая стоимость оборудования;

- гибкость применения оборудования;

- высокая скорость передачи данных.

Содержание работы

Введение_____________________________________________________стр.3

1.Разработка структуры сети_________________________________стр.5
1.Архитектура сети_______________________________________стр.5
2.Стандарты беспроводной сети____________________________стр.6
2.Настройка сетевых компонентов на сервере__________________стр.8
2.1 Установка и настройка DHCP____________________________стр.8

2.1.1 Установка службы DHCP на имеющийся сервер__________стр8

2.1.2 Настройка службы DHCP_____________________________стр.9

2.1.3 Создание новой области______________________________стр.10

2.2 Установка служб IIS и FTP_______________________________стр.12

2.2.1 Настройка службы FTP_______________________________стр.13

2.3 Сервер терминалов______________________________________стр.15

2.3.1 Открыть Подключение к удаленному рабочему столу______стр.16

2.3.2Создание подключения к удаленному рабочему столу______стр.16

2.4 Общий доступ к Интернету_______________________________стр.17

2.4.1 Настройка главного компьютера ICS____________________стр.17

2.4.2 Настройка клиента Windows___________________________стр.19

3. Анализ безопасности сети_________________________________стр.21

3.1 Угрозы в беспроводной сети_____________________________стр.21

3.2 Методы и средства защиты______________________________стр.29

Заключение.__________________________________________________стр.29

Список литературы.____________________________________________стр.30

Файлы: 1 файл

Курсовая Абакумов А.В..doc

— 719.00 Кб (Скачать файл)

Взлом шифрования. Злоумышленникам давно доступны специальные средства для взлома сетей, основывающихся на стандарте шифрования WEP. Эти инструменты широко представлены в Интернете, и их применение не требует особых навыков. Они используют уязвимости алгоритма WEP, пассивно собирая статистику трафика в беспроводной сети до тех пор, пока полученных данных не окажется достаточно для восстановления ключа шифрования. С использованием последнего поколения средств взлома WEP, применяющих специальные методы инъекции трафика, срок «до тех пор» колеблется от 15 мин до 15 с. Совсем недавно были обнаружены первые, пока еще незначительные, уязвимости в TKIP, позволяющие расшифровывать и отправлять в защищенную сеть небольшие пакеты.

Угроза  четвертая – новые угрозы и атаки

Беспроводные  технологии породили новые способы реализации старых угроз, а также некоторые новые, доселе невозможные в проводных сетях. Во всех случаях бороться с атакующим стало гораздо тяжелее, так как невозможно ни отследить его физическое местоположение, ни изолировать от сети.

Разведка. Большинство традиционных атак начинаются с разведки, в результате которой  злоумышленником определяются дальнейшие пути их развития. Для беспроводной разведки используются как средства сканирования беспроводных сетей (NetStumbler, Wellenreiter, встроенный клиент JC), так и средства сбора и анализа пакетов, ведь многие управляющие пакеты WLAN не зашифрованы. При этом очень сложно отличить станцию, собирающую информацию, от обычной, пытающейся получить авторизованный доступ к сети или от попытки случайной ассоциации.

Многие  пробуют защитить свои сети путем  сокрытия ее названия в маячках (Beacon), рассылаемых точками доступа, и  отключения ответа на широковещательный  запрос ESSID (Broadcast ESSID). Общепризнанно, что  методов, относящихся к классу Security through Obscurity, недостаточно, поскольку атакующий все равно видит беспроводную сеть на определенном радиоканале, и ему остается лишь ждать первого авторизованного подключения, так как в его процессе в эфире передается ESSID в незашифрованном виде. После этого данная мера безопасности просто теряет смысл. Некоторые особенности беспроводного клиента Windows XP SP2 (поправленные в SP3) еще более усугубляли ситуацию, ведь клиент постоянно рассылал имя такой скрытой сети в эфир, пытаясь подключиться к ней. В результате злоумышленник не только получал имя сети, но и мог «подсадить» такого клиента на свою точку доступа.

Имперсонализация (Identity Theft). Имперсонализация авторизованного  пользователя – серьезная угроза любой сети, не только беспроводной. Однако в последнем случае определить подлинность пользователя сложнее. Конечно, существуют SSID, и можно пытаться фильтровать по MAC-адресам, но и то и другое передается в эфире в открытом виде, и то и другое несложно подделать. А подделав, как минимум «откусить» часть пропускной способности сети, вставлять неправильные фреймы с целью нарушения авторизованных коммуникаций. Расколов же хоть чуть-чуть алгоритмы шифрования – устраивать атаки на структуру сети (например, ARP Poisoning, как в случае с недавно обнаруженной уязвимостью TKIP). Не говоря уже о взломе WEP, рассмотренном пунктом выше.

Существует  ложное убеждение, что имперсонализация пользователя возможна только в случае MAC-аутентификации или применения статических  ключей, что схемы на основе 802.1x, такие как LEAP, являются абсолютно безопасными. К сожалению, это не так, и уже сейчас доступен инструментарий для взлома, к примеру LEAP. Другие схемы, скажем EAP-TLS или PEAP, более надежны, но они не гарантируют устойчивости к комплексной атаке, использующей несколько факторов одновременно.

Отказы в обслуживании (Denial of Service, DoS). Задачей атаки «Отказ в обслуживании» является либо нарушение показателей качества функционирования сетевых услуг, либо полная ликвидация возможности доступа к ним для авторизованных пользователей. Для этого, к примеру, сеть может быть завалена «мусорными» пакетами (с неправильной контрольной суммой и т. д.), отправленными с легитимного адреса. В случае беспроводной сети отследить источник такой атаки без специального инструментария просто нельзя. Кроме того, есть возможность организовать DoS на физическом уровне, запустив достаточно мощный генератор помех в нужном частотном диапазоне.

Специализированные  инструменты атакующего. Инструментарий атак на беспроводные сети широко доступен в Интернете и постоянно пополняется новыми средствами. Основными типами инструментов атакующего являются:

  • средства разведки – сканирования сетей и определения их параметров, сбора и анализа трафика (Kismet, NetStumbler, AirMagnet, Ethereal, Wireshark со специальным модулем, THC-RUT);
  • инструменты взлома шифрования (AirCrack, WEPWedgie, WEPCrack, WepAttack, AirSnort);
  • инструменты взлома механизмов аутентификации для их обхода или получения параметров учетной записи доступа пользователя (ASLEAP, THC-LEAPCracker);
  • инструменты организации отказов в обслуживании (WLANjack, hunter_killer);
  • сканеры уязвимостей (Nessus, xSpider);
  • инструменты манипулирования беспроводными соединениями (HotSpotter, SoftAP, AirSnarf);
  • традиционный инструментарий (SMAC, IRPAS, Ettercap, Cain & Abel, DSNIFF, IKEcrack).
 

Угроза  пятая – утечки информации из проводной сети

Практически все беспроводные сети в какой-то момент соединяются с проводными. Соответственно, любая беспроводная ТД может быть использована как плацдарм для атаки. Но это еще не все: некоторые ошибки в их конфигурации в сочетании с ошибками конфигурации проводной сети могут открывать пути для утечек информации. Наиболее распространенный пример – ТД, работающие в режиме моста (Layer 2 Bridge), подключенные в плоскую сеть (или сеть с нарушениями сегментации VLAN) и передающие в эфир широковещательные пакеты из проводного сегмента, запросы ARP, DHCP, фреймы STP и т. п. Некоторые из этих данных могут быть полезными для организаций атак Man-in-The-Middle, различных Poisoning и DoS, да и просто разведки.

Другой  распространенный сценарий основывается на особенностях реализации протоколов 802.11. В случае, когда на одной ТД настроены сразу несколько ESSID, широковещательный  трафик будет распространяться сразу  во все ESSID. В результате, если на одной точке настроены защищенная сеть и публичная зона доступа, злоумышленник, подключенный к последней, может, например, нарушить работу протоколов DHCP или ARP в защищенной сети. Это можно исправить, включив режим Multi-BSSID, он же Virtual AP, который поддерживается практически всеми производителями оборудования класса Enterprise (и мало кем из класса Consumer), но об этом нужно знать.

Угроза  шестая – особенности функционирования беспроводных сетей

Некоторые особенности функционирования беспроводных сетей порождают дополнительные проблемы, способные влиять в целом на их доступность, производительность, безопасность и стоимость эксплуатации. Для грамотного решения этих проблем требуются специальный инструментарий поддержки и эксплуатации, специальные механизмы администрирования и мониторинга, не реализованные в традиционном инструментарии управления беспроводными сетями.

Активность  в нерабочее время. К беспроводным сетям можно подключиться в любом  месте в зоне их покрытия и в  любое время. Из-за этого многие организации ограничивают доступность беспроводных сетей в своих офисах исключительно рабочими часами (вплоть до физического отключения ТД). В свете сказанного естественно предположить, что всякая беспроводная активность в сети в нерабочее время должна считаться подозрительной и подлежать расследованию.

Скорости. ТД, разрешающие подключения на низких скоростях, имеют бoльшую зону покрытия. Таким образом, они предоставляют  дополнительную возможность удаленного взлома. Если в офисной сети, где все работают на скоростях 24/36/54 Мб/с, вдруг появляется соединение на 1 или 2 Мб/с, это может быть сигналом, что кто-то пытается пробиться в сеть с улицы.

Помехи. Качество работы беспроводной сети зависит  от многих факторов. Наиболее ярким  примером являются помехи, значительно снижающие пропускную способность и количество поддерживаемых клиентов, вплоть до полной невозможности использования сети. Источником помех может быть любое устройство, излучающее сигнал достаточной мощности в том же частотном диапазоне, что и ТД. С другой стороны, злоумышленники могут использовать помехи для организации DoS-атаки на сеть.

Помимо  помех, существуют другие аспекты, влияющие на качество связи в беспроводных сетях – неверно сконфигурированный клиент или сбоящая антенна ТД могут создавать проблемы как на физическом, так и на канальном уровне, приводя к ухудшению качества обслуживания остальных клиентов сети.

    1.   Методы и средства защиты.

   Стандартами беспроводных сетей предусмотрено  несколько механизмов обеспечения  безопасности:

  • режим аутентификации и шифрования данных по протоколу WEP (Wired Equivalent Privacy);
  • режим аутентификации и шифрования данных по протоколу WPA (Wi-Fi Protected Access);
  • фильтрация по MAC-адресам;
  • использование режима скрытого идентификатора сети.

Протокол WEP

Все современные  беспроводные устройства (точки доступа, беспроводные адаптеры и маршрутизаторы) поддерживают протокол безопасности WEP, который был изначально заложен  в спецификацию беспроводных сетей IEEE 802.11.

Протокол WEP позволяет шифровать поток передаваемых данных на основе алгоритма RC4 с ключом размером 64 или 128 бит. Некоторые устройства поддерживают также ключи в 152, 256 и 512 бит, однако это скорее исключение из правил. Ключи имеют так называемую статическую составляющую длиной 40 и 104 бит соответственно для 64- и 128-битных ключей, а также дополнительную динамическую составляющую размером 24 бита, называемую вектором инициализации (Initialization Vector, IV).

На простейшем уровне процедура WEP-шифрования выглядит следующим образом.

Первоначально передаваемые в пакете данные проверяются  на целостность (алгоритм CRC-32), после  чего контрольная сумма (integrity check value, ICV) добавляется в служебное поле заголовка пакета. Далее генерируется 24-битный вектор инициализации (IV), к  которому добавляется статический (40- или 104-битный) секретный ключ. Полученный таким образом 64- или 128-битный ключ и является исходным ключом для генерации псевдослучайного числа, используемого для шифрования данных. Далее данные смешиваются (шифруются) с помощью логической операции XOR с псевдослучайной ключевой последовательностью, а вектор инициализации добавляется в служебное поле кадра.

На приемной стороне данные могут быть расшифрованы, поскольку вместе с данными передается информация о векторе инициализации, а статическая составляющая ключа хранится у пользователя, которому передаются данные.

Протокол WEP предусматривает два способа  аутентификации пользователей: Open System (открытая) и Shared Key (общий ключ). При  использовании открытой аутентификации собственно никакой аутентификации не происходит, то есть получить доступ в беспроводную сеть может любой пользователь. Однако даже в случае открытой системы допускается применение WEP-шифрования данных.

Протокол WPA

В 2003 году был представлен еще один стандарт безопасности — WPA, главной особенностью которого является технология динамической генерации ключей шифрования данных, построенная на базе протокола TKIP (Temporal Key Integrity Protocol), представляющего собой дальнейшее развитие алгоритма шифрования RC4. По протоколу TKIP сетевые устройства работают с 48-битовым вектором инициализации (в отличие от 24-битового вектора WEP) и реализуют правила изменения последовательности его битов, что исключает повторное использование ключей. В протоколе TKIP предусмотрена генерация нового, 128-битного ключа для каждого передаваемого пакета. Кроме того, контрольные криптографические суммы в WPA рассчитываются по новому методу — MIC (Message Integrity Code). В каждый кадр здесь помещается специальный восьмибайтный код целостности сообщения, проверка которого позволяет отражать атаки с применением подложных пакетов. В итоге получается, что каждый передаваемый по сети пакет данных имеет собственный уникальный ключ, а каждое устройство беспроводной сети наделяется динамически изменяемым ключом.

Помимо  этого протокол WPA поддерживает шифрование по усовершенствованному стандарту AES (Advanced Encryption Standard), который отличается более стойким, по сравнению с  протоколами WEP и TKIP, криптоалгоритмом.

При развертывании беспроводных сетей в домашних условиях или в небольших офисах обычно используется вариант протокола безопасности WPA на основе общих ключей — WPA-PSK (Pre Shared Key). В дальнейшем мы будем рассматривать только вариант WPA, не касаясь вариантов протокола WPA, ориентированных на корпоративные сети, где авторизация пользователей проводится на отдельном RADIUS-сервере.

При использовании WPA в настройках точки доступа  и профилях беспроводного соединения клиентов указывается пароль длиной от 8 до 63 символов.

Фильтрация MAC-адресов

Фильтрация MAC-адресов, которая поддерживается всеми современными точками доступа  и беспроводными маршрутизаторами, хотя и не является составной частью стандарта 802.11, тем не менее, как  считается, позволяет повысить уровень  безопасности беспроводной сети. Для реализации данной функции в настройках точки доступа создается таблица MAC-адресов беспроводных адаптеров клиентов, авторизованных для работы в данной сети.

Режим скрытого идентификатора сети SSID

Еще одна мера предосторожности, которую часто используют в беспроводных сетях, — это режим скрытого идентификатора сети. Каждой беспроводной сети назначается свой уникальный идентификатор (SSID), который представляет собой название сети. При попытке пользователя войти в сеть драйвер беспроводного адаптера прежде сканирует эфир на предмет наличия в ней беспроводных сетей. В случае использования режима скрытого идентификатора (как правило, этот режим называется Hide SSID) сеть не отображается в списке доступных и подключиться к ней можно, только если, во-первых, точно известен ее SSID, а во-вторых, заранее создан профиль подключения к этой сети. 
 
 
 
 
 
 
 
 

Информация о работе Проект защищенной беспроводной вычислительной сети