Понятие транзакции

Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 13:18, Не определен

Описание работы

Целью данной работы является рассмотрение технологии работы с транзакциями, а так же работу транзакций в Microsoft SQL Server 2000

Файлы: 3 файла

крсовая по транзакциямгот.doc

— 772.00 Кб (Скачать файл)

Курсовик Транзакции.doc

— 673.00 Кб (Скачать файл)

     Состояние внешней памяти базы данных называется физически согласованным, если наборы страниц всех объектов согласованы, то есть соответствуют состоянию объекта, либо до его изменения, либо после изменения.

     В журнале отмечаются точки физической согласованности базы данных — моменты времени, в которые во внешней памяти содержатся согласованные результаты операций, завершившихся до соответствующего момента времени, и отсутствуют результаты операций, которые не завершились, а буфер журнала вытолкнут во внешнюю память. Тогда к моменту мягкого сбоя возможны следующие состояния транзакций:

  1. транзакция успешно завершена, то есть, выполнена операция подтверждения транзакции COMMIT и для всех операций транзакции получено подтверждение ее выполнения во внешней памяти;
  2. транзакция успешно завершена, но для некоторых операций не получено подтверждение их выполнения во внешней памяти;
  3. транзакция получила и выполнила команду отката ROLLBACK;

     транзакция  не завершена.[12]

     1.4 Физическая согласованность  базы данных. Восстановление после жесткого сбоя

 

     При открытии файла таблица отображения  номеров его логических блоков в  адреса физических блоков внешней памяти считывается в оперативную память. При модификации любого блока  файла во внешней памяти выделяется новый блок. При этом текущая таблица отображения (в оперативной памяти) изменяется, а теневая — сохраняется неизменной. Если во время работы с открытым файлом происходит сбой, во внешней памяти автоматически сохраняется состояние файла до его открытия. Для явного восстановления файла достаточно повторно считать в оперативную память теневую таблицу отображения.

 

     Рисунок 1.2 -  Использование теневых таблиц отображения информации

     В контексте базы данных теневой механизм используется следующим образом. (Рисунок 1.2) Периодически выполняются операции установления точки физической согласованности базы данных (checkpoints). Для этого все логические операции завершаются, все буферы оперативной памяти, содержимое которых не соответствует содержимому соответствующих страниц внешней памяти, выталкиваются. Теневая таблица отображения файлов базы данных заменяется на текущую.[11]

     Восстановление  происходит мгновенно: текущая таблица  отображения заменяется на теневую. Все проблемы восстановления решаются, но за счет слишком большого перерасхода внешней памяти. В пределе может потребоваться вдвое больше внешней памяти, чем реально нужно для хранения базы данных. Теневой механизм — это надежное, но слишком грубое средство. Обеспечивается согласованное состояние внешней памяти в один общий для всех объектов момент времени. На самом деле достаточно иметь совокупность согласованных наборов страниц, каждому из которых может соответствовать свои временные отсчеты.

     Для выполнения такого более слабого  требования наряду с логической журнализацией  операций изменения базы данных производится журнализация постраничных изменений. Первый этап восстановления после мягкого сбоя состоит в постраничном откате незакончившихся логических операций, как это делается с логическими записями по отношению к транзакциям, последней записью о постраничных изменениях от одной логической операции является запись о конце операции.

     В этом подходе имеются два метода решения проблемы. При использовании  первого метода поддерживается общий  журнал логических и страничных операций. Наличие двух видов записей, интерпретируемых абсолютно по-разному, усложняет структуру журнала. Записи о постраничных изменениях, актуальность которых носит локальный характер, существенно увеличивают журнал.

     Поэтому все более популярным становится поддержание отдельного журнала постраничных изменений. Такая техника применяется, например, в известном продукте Informix Online.

     Некоторым способом удалось восстановить внешнюю память базы данных к состоянию на момент времени tpc. Тогда:

  1. Для транзакции T1 никаких действий производить не требуется. Она закончилась до момента tpc, и все ее результаты отражены во внешней памяти базы данных.
  2. Для транзакции T2 нужно повторно выполнить оставшуюся часть операций (redo). Действительно, во внешней памяти полностью отсутствуют следы операций, которые выполнялись в транзакции T2 после момента tpc. Следовательно, повторная прямая интерпретация операций T2 корректна и приведет к логически согласованному состоянию базы данных. Для транзакции T3 нужно выполнить в обратном направлении первую часть операций (undo). Действительно, во внешней памяти базы данных полностью отсутствуют результаты операций T3, которые были выполнены после момента tpc. С другой стороны, во внешней памяти гарантированно присутствуют результаты операций T3, которые были выполнены до момента tpc. Следовательно, обратная интерпретация операций T3 корректна и приведет к согласованному состоянию базы данных (поскольку транзакция T3 не завершилась к моменту мягкого сбоя, при восстановлении необходимо устранить все последствия ее выполнения).
  3. Для транзакции T4, которая успела начаться после момента tpc и закончиться до момента мягкого сбоя, нужно выполнить полную повторную прямую интерпретацию операций (redo).

     Наконец, для начавшейся после момента tpc и не успевшей завершиться к моменту мягкого сбоя транзакции T5 никаких действий предпринимать не требуется. Результаты операций этой транзакции полностью отсутствуют во внешней памяти базы данных.[14]

     Понятно, что для восстановления последнего согласованного состояния базы данных после жесткого сбоя журнала изменений базы данных явно недостаточно.

     Основой восстановления в этом случае являются журнал и архивная копия базы данных.

     Восстановление начинается с обратного копирования базы данных из архивной копии. Затем для всех закончившихся транзакций выполняется redo, то есть операции повторно выполняются в прямом порядке.

     Более точно, происходит следующее:

  1. по журналу в прямом направлении выполняются все операции;
  2. для транзакций, которые не закончились к моменту сбоя, выполняется откат.

     На  самом деле, поскольку жесткий  сбой не сопровождается утратой буферов  оперативной памяти, можно восстановить базу данных до такого уровня, чтобы  можно было продолжить даже выполнение незакончившихся транзакций. Но обычно это не делается, потому, что восстановление после жесткого сбоя — это достаточно длительный процесс.

     Самый простой способ — архивировать базу данных при переполнении журнала. В  журнале вводится так называемая "желтая зона", при достижении которой образование новых транзакций временно блокируется. Когда все транзакции закончатся и, следовательно, база данных придет в согласованное состояние, можно производить ее архивацию, после чего начинать заполнять журнал заново.

     Можно выполнять архивацию базы данных реже, чем переполняется журнал. При переполнении журнала и окончании всех начатых транзакций можно архивировать сам журнал. Поскольку такой архивированный журнал, по сути дела, требуется только для воссоздания архивной копии базы данных, журнальная информация при архивации может быть существенно сжата. [10] 

     1.5 Параллельное выполнение транзакций. Уровни изолированности пользователей 

     Если  с БД работают одновременно несколько  пользователей, то обработка транзакций должна рассматриваться с новой  точки зрения. В этом случае СУБД должна не только корректно выполнять индивидуальные транзакции и восстанавливать согласованное состояние БД после сбоев, но она призвана обеспечить корректную параллельную работу всех пользователей над одними и теми же данными. По теории каждый пользователь и каждая транзакция должны обладать свойством изолированности, то есть они должны выполняться так, как если бы только один пользователь работал с БД. И средства современных СУБД позволяют изолировать пользователей друг от друга именно таким образом. Однако в этом случае возникают проблемы замедления работы пользователей. Рассмотрим более подробно проблемы, которые возникают при параллельной обработке транзакций.

     Основные  проблемы, которые возникают при  параллельном выполнении транзакций, делятся условно на 4 типа:

  1. Пропавшие изменения. Эта ситуация может возникать, если две транзакции одновременно изменяют одну и ту же запись в БД. Например, работают два оператора на приеме заказов, первый оператор принял заказ на 30 мониторов. Когда он запрашивал склад, то там числилось 40 мониторов, и он, получив подтверждение от клиента, выставил счет и оформил продажу 30 мониторов из 40. Параллельно с ним работает второй оператор, который принимает заказ на 20 таких же мониторов (ну уж очень хорошая модель и дешево) и, в свою очередь запросив состояние склада и получив исходно ту же цифру 40, он успешно оформляет заказ для своего клиента. Заканчивая работу с данным заказом, он выполняет команду Обновить (UPDATE), которая заносит 20 как остаток любимых мониторов на складе. Но после этого, наконец, любезно попрощавшись со своим клиентом и заверив его в скорейшей доставке заказанных мониторов, заканчивает работу со своим заказом первый оператор и также выполняет команду Обновить и заносит 10 как остаток тех же мониторов на складе. Каждый из них доволен своей работой, но мы-то знаем, что произошло. Прежде всего, они продали 50 мониторов из наличествующих 40 штук, и далее на складе еще числится 10 подобных мониторов. БД теперь находится в несогласованном состоянии, а у фирмы возникли серьезные проблемы. Изменения, сделанные вторым оператором, были проигнорированы программой выполнения заказа, с которой работал первый оператор. Подобная ситуация представлена на рисунке 1.3.

     Рисунок 1.3 - Проблема пропавших обновлений

  1. Проблемы промежуточных данных. Рассмотрим ту же проблему одновременной работы двух операторов. Допустим, первый оператор, ведя переговоры со своим заказчиком, ввел заказанные 30 мониторов, но перед окончательным оформлением заказа клиент захотел выяснить еще некоторые характеристики товара. Приложение, с которым работает первый оператор, уже изменило остаток мониторов на складе, и там сейчас находится информация о 10 оставшихся мониторах. В это время второй оператор пытается принять заказ от своего клиента на 20 мониторов, но его приложение показывает, что на складе осталось всего 10 мониторов, и оператор вынужден отказать выгодному клиенту, который идет в другую фирму, весьма неудовлетворенный работой нашей компании. А в этот момент клиент оператора 1 заканчивает обсуждение дополнительных характеристик наших мониторов и принимает весьма невыгодное решение не покупать у нас мониторы, и приложение оператора 1 выполняет откат транзакции, и на складе снова оказывается 40 мониторов. Мы потеряли выгодного заказчика, но еще хуже было бы, если бы клиент второго оператора согласился на 10 оставшихся мониторов, и приложение, с которым работает оператор два, отработав свой алгоритм, занесло 0 (ноль) оставшихся мониторов на складе, а после этого приложение оператора один снова бы записало исходные 40 мониторов на складе, хотя 10 их них уже проданы. Такая ситуация оказалась возможной потому, что приложение второго оператора имело доступ к промежуточным данным, которые сформировало первое приложение.
  2. Проблемы несогласованных данных. Рассмотрю ту же самую ситуацию с заказом мониторов. Предположу, что ситуация несколько изменилась. И оба оператора начинают работать практически одновременно. Они оба получают начальное состояние склада 40 мониторов, а далее первый оператор успешно завершает переговоры со своим клиентом и продает ему 30 мониторов. Он завершает работу своего приложения, и оно выполняет команду фиксации транзакции COMMIT. Состояние базы данных непротиворечивое. В этот момент, выяснив все тонкости и характеристики наших мониторов, клиент второго оператора также решает сделать заказ, и второй оператор, повторно получая состояние склада, видит, что оно изменилось. База данных находится в непротиворечивом состоянии, но второй оператор считает, что нарушена целостность его транзакции, в течение выполнения одной работы он получил два различных состояния склада. Эта ситуация возникла потому, что приложение первого оператора смогло изменить кортеж с данными, который уже прочитало приложение второго оператора.
  3. Проблемы строк-призраков (строк-фантомов). Администратор нашей фирмы поручил секретарю напечатать итоговый отчет по результатам работы за текущий месяц. И допустим, что приложение печатает отчет в двух видах: в подробном и в укрупненном. В момент, когда приложение печати начало формировать свой первый вид отчета, один из операторов принимает еще один заказ, поэтому к моменту формирования укрупненного отчета в БД появились новые сведения о продажах, которые и были внесены в укрупненный отчет. Мы получили два отчета в одном приложении, которые содержат разные цифры и не совпадают друг с другом. Такое стало возможно потому, что приложение печати выполнило два одинаковых запроса и получило два разных результата. БД находится в согласованном состоянии, но приложение печати работает некорректно. [6]

     Для поддержки параллельной работы транзакций строится специальный план.

     План (способ) выполнения набора транзакций называется сериальным, если результат  совместного выполнения транзакций эквивалентен результату некоторого последовательного  выполнения этих же транзакций.

     Самым простым было бы последовательное выполнение транзакций, но такой план не оптимален  по времени, существуют более гибкие методы управления параллельным доступом к БД. Наиболее распространенным механизмом, который используется коммерческими СУБД для реализации на практике сериализации транзакций является механизм блокировок. Самый простой вариант — это блокировка объекта на все время действия транзакции. Здесь две транзакции, названные условно А и В, работают с тремя таблицами: Т1, Т2 и Т3. В момент начала работы с любым объектом этот объект блокируется транзакцией, которая с ним начала работу, и он становится недоступным всем другим транзакциям до окончания транзакции, заблокировавшей ("захватившей") данный объект. После окончания транзакции все заблокированные ею объекты разблокируются и становятся доступными другим транзакциям. Если транзакция обращается к заблокированному объекту, то она остается в состоянии ожидания до момента разблокировки этого объекта, после чего она может продолжать обработку данного объекта. Поэтому транзакция. В ожидает разблокировки таблицы Т2 транзакцией А. Над прямоугольниками стоит условное время выполнения операций. (Рисунок 1.4)

 
Рисунок 1.4 Блокировки при одновременном выполнении двух транзакций
 

     В общем случае на момент выполнения транзакция получает как бы монопольный доступ к объектам БД, с которыми она работает. В этом случае другие транзакции не получают доступа к объектам БД до момента окончания транзакции. Такой механизм действительно ликвидирует все перечисленные ранее проблемы: пропавшие изменения, неподтвержденные данные, несогласованные данные, строки-фантомы. Однако такая блокировка создает новые проблемы — задержку выполнения транзакций из-за блокировок.[5]

     Рассмотрим  существующие типы конфликтов между двумя параллельными транзакциями. Можно выделить следующие типы:

  1. W-W — транзакция 2 пытается изменять объект, измененный незакончившейся транзакцией 1;
  2. R-W — транзакция 2 пытается изменять объект, прочитанный незакончившейся транзакцией 1;
  3. W-R — транзакция 2 пытается читать объект, измененный незакончившейся транзакцией 1.

Схема журнала транзакций.doc

— 63.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Понятие транзакции