Автор работы: Пользователь скрыл имя, 02 Декабря 2010 в 18:05, Не определен
Лекции
Если кодировать символы не восьмиразрядными двоичными числами, а числами с большим количеством разрядов, то диапазон значений кодов станет значительно больше. Такая система появилась. Она основана на 16-разрядном кодировании и получила название универсальной – UNICODE. Позволяет обеспечить коды для 65536 символов, чего достаточно для размещения в одной таблице большинства языков планеты. Система требует повышенных ресурсов техники – все текстовые документы становятся вдвое длиннее.
Графические данные кодируются с помощью растра – деления поля на мельчайшие точки – растр. Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, растровое кодирование позволяет использовать двоичный код для представления графических данных. Для черно-белых изображений считается достаточным иметь комбинации точек с 256 градациями серого цвета и таким образом для кодирования яркости любой точки обычно достаточно 8-разрядного двоичного числа. Для кодирования цвета одной точки нужно затратить 24 разряда. При этом система кодирования обеспечивает 16,5 миллионов различных цветов, что близко к чувствительности человеческого глаза. Такой режим называют полноцветным (True Color). Если уменьшить количество двоичных разрядов до 16, то диапазон цветов снижается до 65536 и такой режим называется High Color. И, наконец, при кодировании цвета с помощью 8 бит данных можно передать 256 цветов. Такой метод называют индексным.
С наименьшей единицей представления данных мы познакомились, это бит.
Практика показала,
что с отдельными битами
Мы видели, что
в некоторых случаях
В информатике для измерения данных используют тот факт, что разные типы данных имеют универсальное двоичное представление и потому введены единицы, основанные на нем.
Наименьшей единицей является байт. Поскольку одним байтом кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объему в символах.
Более крупная единица – килобайт. Условно можно считать что 1 Кбайт = 1000 байт. Условность в том, что для двоичной системы:
1 Кбайт = 210 байт = 1024 байт;
1 Мбайт = 220 байт = 1024 Кбайт;
1 Гбайт = 230 байт = 1024 Мбайт;
При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ. Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, но при этом образуется нагрузка в виде адресных данных. Поскольку адресные данные так же имеют размер и подлежат хранению, хранить данные в виде мелких единиц – таких как байты, неудобно. В более крупных – Кбайт, Мбайт хранить также неудобно, так как неполное заполнение данными.
В качестве единицы хранения данных принят объект переменной длины, называемый файлом. Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем. Обычно в одном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла. В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией.
Хранение файлов организуется в иерархической структуре, которая называется файловой структурой. В качестве вершины структуры служит имя носителя, на котором сохраняются файлы. Далее файлы группируются в каталоги (папки). Путь доступа к файлу начинается с имени устройства и включает все имена папок через которые проходит. В качестве разделителя используется символ \ (обратная косая черта). Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя вместе с путем доступа к нему. Форма записи полного имени:
<имя носителя>:\<имя
папки>\...\<имя папки>\<
Слово компьютер обозначает в переводе вычислитель. В современном понятии компьютер – это электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортировки данных.
Потребность в автоматизации обработки данных возникла очень давно. Более чем 1500 лет назад появились счеты - устройство, состоящее из набора костяшек, нанизанных на стержни.
В 1642 году французский механик Блез Паскаль разработал суммирующее устройство с шестернями, колёсами, зубчатыми рейками и т.п. Оно умело "запоминать" числа и выполнять элементарные арифметические операции.
В 1673 году Лейбниц создал механический калькулятор, который мог выполнять четыре арифметических действия. Лейбниц так же предложил возможность представление любых чисел двоичными цифрами. Он пришел к двоичной системе счисления, занимаясь исследованиями философской концепции единства и борьбы противоположностей.
Джордж Буль занимаясь исследованием законов мышления применил в логике систему формальных обозначений и правил, близкую к математической (первая половина 19 века). Впоследствии эту систему назвали логической или булевой алгеброй. Значение логической алгебры долгое время игнорировалось, поскольку ее приемы и методы не содержали практической пользы для науки и техники того времени. Однако когда появилась возможность создания средств ВТ на электронной основе, операции, введенные Булем оказались очень полезны, так как они изначально ориентировались на работу только с двумя сущностями: истина и ложь. Не вся система была использована, но четыре основные операции: И (пересечение, конъюнкция), ИЛИ (объединение, дизъюнкция), НЕ (обращение или отрицание, ), ИСКЛЮЧАЮЩЕЕ ИЛИ – лежат в основе всех видов процессоров современных компьютеров.
1936 г. Алан Тьюринг и независимо от него Э. Пост выдвинули и разработали концепцию абстрактной вычислительной машины. Они доказали принципиальную возможность решения автоматами любой проблемы при условии возможности её алгоритмизации.
1945 г. Джон фон Нейман в отчёте "Предварительный доклад о машине Эдвак" сформулировал основные принципы работы и компоненты современных компьютеров.
1948 г. В американской фирме Bell Laboratories физики Уильям Шокли, Уолтер Браттейн и Джон Бардин создали транзистор. За это достижение им была присуждена Нобелевская премия.
1952 г. Под руководством С.А. Лебедева в Москве построен компьютер БЭСМ-1 (большая электронная счетная машина) — на то время самая производительная машина в Европе и одна из лучших в мире.
1957 г. Американской фирмой NCR создан первый компьютер на транзисторах.
1958 г. Джек Килби из фирмы Texas Instruments создал первую интегральную схему.
1959 г. Создана машина М-20, главный конструктор С.А. Лебедев. Для своего времени одна из самых быстродействующих в мире (20 тыс. опер./с.). На этой машине было решено большинство теоретических и прикладных задач, связанных с развитием самых передовых областей науки и техники того времени. На основе М-20 была создана уникальная многопроцессорная М-40 — самая быстродействующая ЭВМ того времени в мире (40 тыс. опер./с.). На смену М-20 пришли полупроводниковые БЭСМ-4 и М-220 (200 тыс. опер./с.).
1974 г. Фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами.
1974 г. Эдвард Робертс, молодой офицер ВВС США, инженер-электронщик, построил на базе процессора 8080 микрокомпьютер Альтаир, имевший огромный коммерческий успех, продававшийся по почте и широко использовавшийся для домашнего применения.
1976 г. Студенты Стив Возняк и Стив Джобс, устроив мастерскую в гараже, реализовали компьютер Apple-1, положив начало корпорации Apple.
1981 г. Фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.
1983 г. Корпорация Apple Computers построила персональный компьютер "Lisa" — первый офисный компьютер, управляемый манипулятором "мышь".
1984 г. Корпорация Apple Computer выпустила компьютер Macintosh — первую модель знаменитого впоследствии семейства Macintosh c удобной для пользователя операционной системой, развитыми графическими возможностями, намного превосходящими в то время те, которыми обладали стандартные IBM-совместимые ПК с MS-DOS. Эти компьютеры быстро приобрели миллионы поклонников и стали вычислительной платформой для целых отраслей, таких например, как издательское дело и образование.
Компьютер (англ. computer — вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. |
Существует два основных класса компьютеров:
Поскольку в настоящее время подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер".
Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) — заранее заданных, четко определённых последовательностей арифметических, логических и других операций. |
Любая компьютерная программа представляет собой последовательность отдельных команд.
Команда — это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат. |
Например, у команды "сложить два числа" операндами являются слагаемые, а результатом — их сумма. А у команды "стоп" операндов нет, а результатом является прекращение работы программы.
Результат команды вырабатывается по точно определенным для данной команды правилам, заложенным в конструкцию компьютера.
Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера. |
Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих выделить в любом компьютере следующие главные устройства:
Эти устройства соединены каналами связи, по которым передается информация.
Функции памяти:
Функции процессора:
Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называется устройством управления (УУ). |
Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.