Автор работы: Пользователь скрыл имя, 18 Марта 2010 в 00:20, Не определен
Вычислительные машины, комплексы, системы и сети
Преимуществом обслуживания корпоративных сетей силами специализированной фирмы является неизменно высокое качество, стабильность, профессионализм и быстрое решение любых возникающих в процессе вашей работы технических проблем.
Грамотный специалист, имеющий большой опыт работы с оборудованием и программным обеспечением требует соответствующей его знаниям оплаты. Иметь сотрудника, в компетенции которого Вы до конца не уверены, опасно для вашего бизнеса, поскольку любой сбой в работе компьютерной системы может надолго вывести Вашу фирму из рабочего состояния.
Поддержка тематических приложений;
Поддержка посредством библиотеки VCL эффектов отражения Microsoft Windows Vista Aero, диалоговых окон для работы с файлами в стиле Vista и компонентов диалоговых окон выполнения задач;
Библиотека VCL для Web с поддержкой AJAX. Обратная совместимость с компонентами Developer Studio 2006 от CodeGear.
Borland
Delphi 2007 for Win32 содержит несколько
сотен качественных
Основные функции:
Borland Delphi 2007 for Win32 Enterprise R2 - версия ориентирована на корпоративные разработки, когда требуется использование технологий AJAX, возможность создания сложных веб - приложений, а также подключение к корпоративным базам данных. Enterprise включает все функции Professional и кроме того поддерживает работу с Oracle 10g, MS SQL Server 2000/2005, Informix 9x, IBM DB2 8.x, Sybase 12.5 и позволяет использовать технологию AJAX при создании Web-приложений. Enterprise также содержит улучшенные функции для платформы Together Visual Modeling Platform, среди которых - новые диаграммы (Sequence, Collaboration, Deployment, Use Case, Activity и Component), конструктор шаблонов, XMI 1.1 Import/Export, создание документации, аудит и метрики.
2.2 Описание принципов построения, структуры и технологии использования САПР ПО на предприятии.
Delphi использует язык 3-го поколения Object Pascal, обладающий полной реализаций основных признаков объектной ориентации (инкапсуляция, наследование, полиморфизм), поддержкой RTTI-RunTime Type Information и встроенной обработкой исключительных ситуаций (Exception handling). Компонентная архитектура Delphi является прямым развитием поддерживаемой объектной модели. Все компоненты являются объектными типами (классами), с возможностью неограниченного наследования. Компоненты Delphi поддерживают PME-модель (Property, Method, Events), позволяющую изменять поведение компонентов без необходимости создания новых классов.
Компоненты Delphi
Delphi 2 Client/Server Suite включает систему контроля версий Intersolv PVCS, поддерживает работу со словарем данных (Data Dictionary) и Репозитарием объектов (Object Repository). Среда визуальной разработки Delphi позволяет единообразно работать как с предопределенными, так и с пользовательскими компонентами, которые разрабатываются на том же языке (Object Pascal), на котором создаются и конечные приложения.
Delphi 2 Client/Server Suite (GIF,12Kb)
Borland Database Engine (BDE) обеспечивает единообразную работу с локальными данными (Paradox, dBase) и серверами БД (Oracle, Sybase, MS SQL Server, InterBase и т.д.), за счет применения навигационных методов доступа к серверным СУБД (двунаправленные курсоры, закладки и т.п.) и SQL - к локальным форматам (подмножество Local SQL).
|
Рисунок 2. Структурная схема Borland Database Engine |
Компилятор Delphi является самым быстрым; имеет общий генератор кода с Borland C++ (Delphi 2 & BC++ 5). Компилятор Delphi (точнее, Object Pascal) является продолжением линии компиляторов Turbo Pascal / Borland Pascal.
Открытые интерфейсы Delphi - Open Tools API - обеспечивают контроль над средой разработки "из вне" и доступ к информации о проекте.
Delphi
2.01 Client/Server Suite включает CASE Expert, позволяющий
импортировать данные из
"Эксперты" (программные модули, встраиваемые в IDE) позволяют использовать Delphi как "скелет" - общую среду разработки - для всего комплекса используемых инструментов.
При
построении систем масштаба предприятия
практически невозможно избежать неоднородности
(разные ОС, СУБД, промежуточное ПО и
т.п.). Встает вопрос о средствах объединения
разных технологических платформ. Достаточно
четко можно разбить
В рамках новой инициативы Golden Gate, Borland объединяет уже имеющиеся технологии с достижениями Open Environment Corporation - OEC (приобретена компанией Borland) в области средств для построения многоуровневых, распределенных систем. Продукт OEC OLEnterprise обеспечивает распределенные вычисления на базе технологий OLE automation / RPC (Remote Procedure Call) поверх D-COM и в отсутствии такового на всех платформах Windows (в том числе Win16). Полная автоматизация импорта/экспорта объектов в сети позволяет избежать необходимости изменения кода приложений для их взаимодействия на разных участках сети.
В силу того, что Delphi полностью поддерживает OLE-automation и предоставляет высокоуровневые средства работы с этими механизмами (специализированные классы, эксперты, языковые расширения), вариант совместного использования Delphi & OLEnterprise может оказать решающее воздействие на архитектуру системы => распределенные вычисления и локальные рабочие места - все в одном коде.
|
Рисунок 3. Структурная схема OEC Architecture |
Так как Delphi обеспечивает создание "чистого" (native) кода посредством компиляции (например в самодостаточную - без интерпретатора - динамическую библиотеку DLL), возможна тонкая интеграция полученных программных модулей не только с 3-ми клиентскими приложениями но и с серверами приложений и баз данных на платформах Windows (в большей степени Windows NT, как следствие ее приспособленности для поддержки серверных звеньев). В качестве примера можно привести построение определяемых пользователем функций UDF для серверов БД Borland InterBase (например, для специфической обработки BLOB-полей).
Главной целью Golden Gate является объединение лучших черт архитектуры клиент/сервер и модели intranet. И первым этапом ее реализации является добавление средств интеграции с Internet-технологиями в уже имеющиеся средства разработки. Delphi не является исключением. Выпущенная летом 1996 года обновленная версия Delphi 2.01 включает поддержку модулей сопряжения с Internet для Windows 95/NT - WinINET; возможность построения блоков расширения Microsoft Information Server через интерфейсы ISAPI & ISAPI Filter; 8 элементов ActiveX, полностью реализующих логику поддержки основных Internet-протоколов и HTML (обработка + отображение => построение броузеров) в виде повторно используемых компонентов.
Рисунок 4. Схема взаимодействия с ActiveX |
С
этих точек зрения, гибкость такого
инструмента корпоративного разработчика,
как Delphi становится не менее важным фактором,
чем возможность стандартизации бизнес-логики
и организации бизнес-процессов, но это
уже тема для другого доклада.
3. Архитектура ЭВМ и МПС
3.1 Описание архитектурных свойств и структур ЭВМ, применяемых на предприятии
На предприятии установлены ЭВМ типа IBM PC ATX с архитектурой HyperTransport
Архитектура HyperTransport
Технология (архитектура) HyperTransport (HT) задумывалась как альтернатива шинно-мостовой архитектуре системных плат. Технология разработана компаниями AMD, Apple Computers, Broadcom, Cisco Systems, NVIDIA, PMC-Sierra, SGI, SiPackets, Sun Microsystems, Transmeta. Первый релиз вышел в 2001 году, в 2003-м — версия 1.10. Прежнее кодовое название — LDT (Lighting Data Transport).
Основная идея НТ — замена шинного соединения компонентов (периферийных устройств) системой двухточечных встречно направленных соединений. При этом достижима более высокая тактовая частота интерфейсов, что обеспечивает их более высокую (по сравнению с шиной) пропускную способность. Структурная схема компьютера архитектуры НТ приведена на рисунок 5. Главный мост (host bridge) обеспечивает связь НТ с ядром — процессором и памятью. Периферийные контроллеры, требующие высокой пропускной способности, реализуются в виде НТ-туннелей. В архитектуре предусматривается и мостовая связь с шиной PCI.
Архитектура НТ обеспечивает все типы транзакций процессоров и устройств PCI, PCI-X и AGP, используемые в PC. Транзакции выполняются в виде серий передач пакетов различных типов. В традиционных транзакциях целевое устройство идентифицируется адресом: чтение и запись в пространстве памяти, ввод-вывод в конфигурационном пространстве, а также считывание вектора прерывания из PIC 8259A и специальные циклы PCI (см. 14.2). Для унификации транзакций все пространства отображаются на единое 40-битное пространство адресов (объем 1 Тбайт), адрес передается в управляющих пакетах. Первые 1012 Гбайт пространства выделены для отображения обычного пространства памяти (для ОЗУ и ввода-вывода, отображенного на память). В оставшейся 12-гигабайтной области размещаются конфигурационное пространство (32 Мбайт), пространство ввода-вывода (32 Мбайт), память SMM, пространства адресов для выдачи векторов и подтверждения прерываний; 54 Мбайт остались в резерве. Транзакции НТ обеспечивают программное взаимодействие процессора с устройствами, прямой доступ к памяти и одноранговое взаимодействие устройств с адресацией в описанном комбинированном пространстве. Существует сетевое расширение спецификации, поддерживающее обмен сообщениями (как в сетях), причем возможны и широковещательные сообщения.
Транзакции
выполняются расщепленным способом:
инициатор посылает пакет-запрос и
данные для транзакции записи, целевое
устройство посылает пакет-ответ и данные
для транзакций чтения. Технология НТ
обеспечивает упорядоченность выполнения
транзакций; есть возможность регулировать
качество обслуживания (Quality of Service, QoS),
что позволяет организовывать изохронные
передачи.
|
Сигнализация прерываний в НТ реализуется тоже пакетами: устройство посылает сообщение — выполняет транзакцию записи по адресу, указанному ему при конфигурировании (аналогично MSI на шине PCI). Обработчик прерывания посылает сообщение о завершении обработки прерывания (End Of Interrupt, EOI), делая запись по другому адресу, связанному с данным устройством. Такой механизм сигнализации запросов и подтверждений позволяет преодолеть неэффективность традиционого для PC механизма прерываний с помощью специальных линий IRQ.
Архитектура
НТ основана на двусторонней пакетной
передаче данных между парой устройств.
Устройство НТ может выступать в
роли инициатора или/и целевого устройства
транзакций. По топологическим свойствам
различают несколько типов
- Туннель (tunnel) — устройство с двумя интерфейсами НТ; такие устройства могут собираться в цепочку (daisy chain), образующую логическую шину. Цепочка подключается к хосту (процессору с главным мостом), отвечающему за конфигурирование всех устройств и управляющему работой НТ.
- Мост (bridge) — устройство, соединяющее одну логически первичную шину (подключенную к хосту) с одной или несколькими логически вторичными шинами (цепочками). Мост имеет набор регистров, информация которых позволяет управлять распространением транзакций между этими шинами (аналогично мосту РС1).
- Коммутатор (switch) — устройство с несколькими интерефейсами НТ. по структуре аналогичное нескольким мостам PCI, подключенным к одной (внутренней) шине.
- Тупик, или пещера (cave) — устройство с одним интерфейсом НТ.
Хост (host) — это «хозяин шины», подключающийся к ней через главный мост и выполняющий функции конфигурирования (аналогично и совместимо с PCI). Основной вариант топологии — цепочка устройств-туннелей, подключенная верхним концом к хосту. Каждый интерфейс НТ состоит из двух независимых частей: передатчика и приемника. Каждому устройству при конфигурировании выделяются свои области в адресном пространстве. В цепочке устройства-туннели транслируют пакеты сверху вниз (нисходящий трафик) и снизу вверх (восходящий). Если в нисходящем управляющем пакете устройство обнаруживает свой адрес, оно «понимает», что обращаются к нему, и принимает соответствующую информацию (управляющие пакеты и данные). Восходящий трафик туннель транслирует «вслепую». На полученные запросы устройство отвечает посылкой пакетов вверх, включая их в транслируемый восходящий трафик. Таким образом обеспечивается программное взаимодействие процессора с устройствами. Собственные запросы на доступ к памяти устройство посылает тоже вверх, как и запросы (обращения) к другим устройствам (независимо от положения целевого устройства — выше или ниже в цепочке). Доставку пакета адресату обеспечивает главный мост: он разворачивает пакет, принятый из цепочки (адресованный не к ОЗУ), и посылает его вниз — так организуется одноранговое взаимодействие. На пакет, адресованный к ОЗУ, главный мост организует ответ от контроллера памяти, реализуя таким образом прямой доступ к памяти.