Особенности экспертных систем

Автор работы: Пользователь скрыл имя, 06 Декабря 2010 в 21:18, Не определен

Описание работы

Особенности экспертных систем
Структура и режимы использования ЭС
Организация знаний в ЭС
Отличие ЭС от традиционных программ
Компетентность ЭС
Символьные рассуждения в ЭС
Глубина ЭС

Файлы: 1 файл

ЭС.doc

— 270.00 Кб (Скачать файл)

В тех случаях, когда по отношению к сложной  задаче или данным о ней сделаны  существенные упрощения, полученное решение может оказаться неприменимым в масштабах, которые характерны для реальной проблемы. Рекомендации, методы представления знаний, организация знаний, необходимые для применения методов решения задач к этим знаниям, часто связаны с объемом и сложностью пространства поиска, т. е. множества возможных промежуточных и окончательных решений задачи. Если проблема сверхупрощена или нереалистична, то размерность пространства поиска будет, скорее всего, резко уменьшена, и не возникнет проблем с быстродействием и эффективностью, столь характерных для реальных задач. Эта проблема размерности возникает столь естественно и неуловимо, что даже искушенные в ИИ специалисты могут не оценить ее истинные масштабы.

6.1.4. Самосознание ЭС

Экспертные системы имеют знания, позволяющие им рассуждать об их собственных действиях, и структуру, упрощающую такие рассуждения. Например, если ЭС основана на правилах, то ей легко просмотреть цепочки выводов, которые она порождает, чтобы прийти к решению задачи. Если заданы еще и специальные правила, из которых ясно, что можно сделать с этими цепочками выводов, то можно использовать эти знания для проверки точности, устойчивости и правдоподобия решений задачи и даже построить доводы, оправдывающие или объясняющие процесс рассуждения. Это знание системы о том, как она рассуждает, называется метазнанием, что означает всего лишь знания о знаниях.

У большинства  ныне существующих ЭС есть так называемый механизм объяснения. Это знания, необходимые для объяснения того, каким образом система пришла к данным решениям. Большинство этих объяснений включают демонстрацию цепочек выводов и доводов, объясняющих, на каком основании было применено каждое правило в цепочке. Возможность проверять собственные процессы рассуждения и объяснять свои действия — это одно из самых новаторских и важных свойств ЭС. Но почему это свойство так важно?

"Самосознание" так важно для ЭС потому, что:

  • пользователи начинают больше доверять результатам, испытывать большую уверенность в системе;
  • ускоряется развитие системы, так как систему легче отлаживать;
  • предположения, положенные в основу работы системы, становятся явными, а не подразумеваемыми;
  • легче предсказывать и выявлять влияние изменений на работу системы.

Умение объяснить  — это всего лишь один из аспектов самосознания. В будущем самосознание позволит ЭС делать даже больше. Они сами смогут создавать обоснования отдельных правил путем рассуждения, исходящего из основных принципов. Они будут приспосабливать свои объяснения к требованиям пользователя. Они смогут изменять собственную внутреннюю структуру путем коррекции правил, реорганизации базы знаний и реконфигурации системы.

Первый шаг  в этом направлении — выделить метазнания и сделать их явными, точно так же как знания о предметной области выделены и сделаны явными. Ниже приведен пример метазнания — знания о том, как использовать предметные знания.

ЕСЛИ: к данной ситуации применимо несколько правил,

ТО: использовать сначала правила, предложенные экспертами, прежде чем прибегнуть к правилам, предложенным новичками.

Это метаправило  говорит ЭС, каким образом она  должна выбирать те правила, которые  надо выполнить. Специалисты по ИИ еще  только начинают экспериментировать с  формами представления метазнаний и их организацией в ЭС.

6.1.5. Ошибки экспертных  систем

Существует еще одно очень важное отличие ЭС от традиционных программ. Традиционные программы разрабатываются таким образом, чтобы каждый раз порождать правильный результат, но ЭС заведомо создаются так, чтобы вести себя как эксперты, которые, как правило, дают правильные ответы, но иногда способны ошибаться.

На первый взгляд кажется, что в этом отношении  традиционные программы имеют явное  преимущество. Однако это преимущество мнимое. Традиционные программы для  решения сложных задач, напоминающих те, которые подходят для ЭС, тоже могут делать ошибки. Но их ошибки чрезвычайно трудно исправлять, поскольку стратегии, эвристики и принципы, лежащие в основе этих программ, не сформулированы явно в их тексте. Следовательно, эти ошибки нелегко определить и исправить. Подобно людям, ЭС могут ошибаться. Но в отличие от обычных программ, они имеют потенциальную способность учиться на своих ошибках. С помощью компетентных пользователей можно заставить экспертные системы совершенствовать свое умение решать задачи в ходе практической работы.

Классификация экспертных систем

Одним из наиболее значительных достижений искусственного интеллекта стала разработка мощных компьютерных систем, получивших название "экспертных", или основанных на "знаниях" систем. В современном  обществе при решении задач управления сложными многопараметрическими и сильносвязанными системами, объектами, производственными и технологическими процессами приходится сталкиваться с решением неформализуемых либо трудноформализуемых задач. Такие задачи часто возникают в следующих областях: авиация, космос и оборона, нефтеперерабатывающая промышленность и транспортировка нефтепродуктов, химия, энергетика, металлургия, целлюлозно-бумажная промышленность, телекоммуникации и связь, пищевая промышленность, машиностроение, производство цемента, бетона и т. п. транспорт, медицина и фармацевтическое производство, административное управление, прогнозирование и мониторинг. Наиболее значительными достижениями в этой области стало создание систем, которые ставят диагноз заболевания, предсказывают месторождения полезных ископаемых, помогают в проектировании электронных устройств, машин и механизмов, решают задачи управления реакторами и другие задачи [11, 73].

Итак, под экспертной системой (ЭС) понимают программу, которая  использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала.

Осознание полезности систем, которые могут копировать дорогостоящие или редко встречающиеся  человеческие знания, привело к широкому внедрению и расцвету этой технологии в 1980-1990-е годы прошлого века. Основу успеха ЭС составили два важных свойства, отмечаемые рядом исследователей [85, 79]:

  • в ЭС знания отделены от данных, и мощность экспертной системы обусловлена в первую очередь мощностью базы знаний и только во вторую очередь — используемыми методами решения задач;
  • решаемые ЭС задачи являются неформализованными или слабоформализованными и используют эвристические, экспериментальные, субъективные знания экспертов в определенной предметной области.

Основными категориями  решаемых ЭС задач являются: диагностика, управление (в том числе технологическими процессами), интерпретация, прогнозирование, проектирование, отладка и ремонт, планирование, наблюдение (мониторинг), обучение.

Обобщенная схема  ЭС приведена на рис. 6.2, здесь она более подробная, чем в предыдущей лекции. Основу ЭС составляет подсистема логического вывода, которая использует информацию из базы знаний (БЗ), генерирует рекомендации по решению искомой задачи. Чаще всего для представления знаний в ЭС применяются системы продукций и семантические сети. Допустим, БЗ состоит из фактов и правил (если <посылка>, то <заключение>). Если ЭС определяет, что посылка верна, то правило признается подходящим для данной консультации и запускается в действие. Запуск правила означает принятие заключения данного правила в качестве составной части процесса консультации.

Обязательными частями любой ЭС являются также  модуль приобретения знаний, модуль отображения  и объяснения решений. В большинстве  случаев реальные ЭС в промышленной эксплуатации работают также на основе баз данных (БД).

 
Рис. 6.2.  Структура экспертной системы

Только одновременная  работа со знаниями и большими объемами информации из БД позволяет ЭС получить неординарные результаты, например, поставить сложный диагноз (медицинский или технический), открыть месторождение полезных ископаемых, управлять ядерным реактором в реальном времени.

Важную роль при создании ЭС играют инструментальные средства. Среди инструментальных средств  для создания ЭС наиболее популярны такие языки программирования, как LISP и PROLOG, а также экспертные системы-оболочки (ЭСО): KEE, CENTAUR, G2 и GDA, CLIPS, АТ_ТЕХНОЛОГИЯ, предоставляющие в распоряжение разработчика — инженера по знаниям широкий набор для комбинирования систем представления знаний, языков программирования, объектов и процедур [66, 103].

Рассмотрим различные  способы классификации ЭС.

По назначению ЭС делятся на:

  • ЭС общего назначения;
  • специализированные ЭС.

В свою очередь, специализированные ЭС делятся на:

  • проблемно-ориентированные для задач диагностики, проектирования, прогнозирования;
  • предметно-ориентированные для специфических задач, например, контроля ситуаций на атомных электростанциях.

По степени  зависимости от внешней среды  выделяют:

  • статические ЭС, не зависящие от внешней среды;
  • динамические, учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени. Время реакции в таких системах может задаваться в миллисекундах, и эти системы реализуются, как правило, на языке С++.

По типу использования  различают:

  • изолированные ЭС;
  • ЭС на входе/выходе других систем;
  • гибридные ЭС или, иначе говоря, ЭС, интегрированные с базами данных и другими программными продуктами (приложениями).

По сложности  решаемых задач различают:

  • простые ЭС — до 1000 простых правил;
  • средние ЭС — от 1000 до 10000 структурированных правил;
  • сложные ЭС — более 10000 структурированных правил.

По стадии создания выделяют:

  • исследовательский образец ЭС, разработанный за 1-2 месяца с минимальной БЗ;
  • демонстрационный образец ЭС, разработанный за 2-4 месяца, например, на языке типа LISP, PROLOG, CLIPS;
  • промышленный образец ЭС, разработанный за 4-8 месяцев, например на языке типа CLIPS с полной БЗ;
  • коммерческий образец ЭС, разработанный за 1,5-2 года, например на языке типа С++, Java с полной БЗ.

6.3. Трудности при  разработке экспертных  систем

Разработка ЭС связана с определенными трудностями, которые необходимо хорошо знать, так  же как и способы их преодоления. Рассмотрим подробнее эти проблемы.

  1. Проблема извлечения знаний экспертов. Ни один специалист никогда просто так не раскроет секреты своего профессионального мастерства, свои сокровенные знания в профессиональной области. Он должен быть заинтересован материально или морально, причем хорошо заинтересован. Никто не хочет рубить сук, на котором сидит. Часто такой специалист опасается, что, раскрыв все свои секреты, он будет не нужен компании. Вместо него будет работать экспертная система. Избежать этого поможет выбор высококвалифицированного эксперта, заинтересованного в сотрудничестве.
  2. Проблема формализации знаний экспертов. Эксперты-специалисты в определенной области, как правило, не в состоянии формализовать свои знания. Часто они принимают правильные решения на интуитивном уровне и не могут аргументированно объяснить, почему принято то или иное решение. Иногда эксперты не могут прийти к взаимопониманию (фраза "встретились два геолога, у них было три мнения" — не шутка, а жизненная реальность). В таких ситуациях поможет выбор эксперта, умеющего ясно формулировать свои мысли и легко объяснять другим свои идеи.
  3. Проблема нехватки времени у эксперта. Выбранный для разработки эксперт не может найти достаточно времени для выполнения проекта. Он слишком занят. Он всем нужен. У него есть проблемы. Чтобы избежать этой ситуации, необходимо получить от эксперта, прежде чем начнется проект, согласие тратить на проект время в определенном фиксированном объеме.
  4. Правила, формализованные экспертом, не дают необходимой точности. Этого можно избежать, если решать вместе с экспертом реальные задачи. Не надо придумывать "игрушечных" ситуаций или задач. В условиях задач нужно использовать реальные данные, такие как лабораторные данные, отчеты, дневники и другую информацию, взятую из практических задач. Постарайтесь говорить с экспертом на одном языке, применяя единую терминологию. Эксперт, как правило, легче понимает правила, записанные на языке, близком к естественному, а не на языке типа LISP или PROLOG.
  5. Недостаток ресурсов. В качестве ресурсов выступают персонал (инженеры знаний, разработчики инструментальных средств, эксперты) и средства построения ЭС (средства разработки и средства поддержки). Недостаток благожелательных и грамотных администраторов порождает скептицизм и нетерпение у руководителей. Повышенное внимание в прессе и преувеличения вызвали нереалистические ожидания, которые приводят к разочарованию в отношении экспертных систем. ЭС могут давать не самые лучшие решения на границе их применимости, при работе с противоречивыми знаниями и в рассуждениях на основе здравого смысла. Могут потребоваться значительные усилия, чтобы добиться небольшого увеличения качества работы ЭС. Экспертные системы требуют много времени на разработку. Так, создание системы PUFF для интерпретации функциональных тестов легких потребовало 5 человеко-лет, на разработку системы PROCPECTOR для разведки рудных месторождений ушло 30 человеко-лет, система XCON для расчета конфигурации компьютерных систем на основе VAX 11/780 потребовала 8 человеко-лет. ЭС последних времен разрабатываются более быстрыми темпами за счет развития технологий ЭС, но проблемы остались. Удвоение персонала не сокращает время разработки наполовину, потому что процесс создания ЭС — это процесс со множеством обратных связей. Все это необходимо учитывать при планировании создания ЭС.
  6. Неадекватность инструментальных средств решаемой задаче. Часто определенные типы знаний (например, временные или пространственные) не могут быть легко представлены на одном языке ПЗ, так же как и разные схемы представления (например, фреймы и продукции) не могут быть достаточно эффективно реализованы на одном языке ПЗ. Некоторые задачи могут быть непригодными для решения по технологии ЭС (например, отдельные задачи анализа сцен). Необходим тщательный анализ решаемых задач, чтобы определить пригодность предлагаемых инструментальных средств и сделать правильный выбор.

Информация о работе Особенности экспертных систем