Автор работы: Пользователь скрыл имя, 10 Апреля 2010 в 17:48, Не определен
Каждый человек время от времени оказывается в ситуации, когда достижение некоторого результата может быть осуществлено не единственным способом. В таких случаях приходится отыскивать наилучший способ. Однако в различных ситуациях наилучшими могут быть совершенно разные решения. Все зависит от выбранного или заданного критерия. На практике оказывается, что в большинстве случаев понятие «наилучший» может быть выражено количественными критериями – минимум затрат, минимум времени, максимум прибыли и т.д. Поэтому возможна постановка математических задач отыскания оптимального (optimum – наилучший) результата, так как принципиальных различий в отыскании наименьшего или наибольшего значения нет. Задачи на отыскание оптимального решения называются задачами оптимизации. Оптимальный результат, как правило, находится не сразу, а в результате процесса, называемого процессом оптимизации.
Каждый человек время от времени оказывается в ситуации, когда достижение некоторого результата может быть осуществлено не единственным способом. В таких случаях приходится отыскивать наилучший способ. Однако в различных ситуациях наилучшими могут быть совершенно разные решения. Все зависит от выбранного или заданного критерия. На практике оказывается, что в большинстве случаев понятие «наилучший» может быть выражено количественными критериями – минимум затрат, минимум времени, максимум прибыли и т.д. Поэтому возможна постановка математических задач отыскания оптимального (optimum – наилучший) результата, так как принципиальных различий в отыскании наименьшего или наибольшего значения нет. Задачи на отыскание оптимального решения называются задачами оптимизации. Оптимальный результат, как правило, находится не сразу, а в результате процесса, называемого процессом оптимизации. Применяемые в процессе оптимизации методы получили название методов оптимизации. Чтобы решить практическую задачу надо перевести ее на математический язык, то есть составить ее математическую модель.
Математическая модель представляет собой стройную и глубокую совокупность знаний о математических моделях со своими проблемами, с собственными путями развития, обусловленными внутренними и внешними причинами и задачами. Математика дает удобные и плодотворные способы описания самых разнообразных явлений реального мира и тем самым выполняет в этом смысле функцию языка. Эту роль математики прекрасно осознавал Галилей, сказавший: «Философия написана в грандиозной книге – Вселенной, которая открыта нашему пристальному взгляду. Но понять эту книгу может лишь тот, кто научился понимать ее язык и знаки, которыми она изложена. Написана же она на языке математики».
Итак, математика – это область человеческого знания, в которой изучаются математические модели.
Часто
в математической модели требуется
найти наибольшее или наименьшее
значение некоторой функции на некотором
множестве, то есть решить задачу оптимизации.
Методов решения задач
Знание методов нахождения оптимального решения позволяет инженеру и офицеру выбирать наиболее эффективные и самые экономичные способы эксплуатации и ремонта машин, находить оптимальные решения тактических задач.
В курсовой работе по методам оптимизации предлагается две задачи: задача линейного программирования и общая задача оптимизации, решаемая графическим методом.
Объект исследования: процесс исследования задач оптимизационного моделирования.
Предмет исследования: методы решения задач линейного программирования.
Цель: освоить решения задач в Excel.
Задачи:
Линейное программирование – это раздел методов оптимизации. К числу задач линейного программирования можно отнести задачи:
Задачами линейного программирования называются задачи, в которых линейны как целевая функция, так и ограничения в виде равенств и неравенств. Кратко задачу линейного программирования можно сформулировать следующим образом: найти вектор значений переменных, доставляющих экстремум линейной целевой функции при m ограничениях в виде линейных равенств или неравенств.
Линейное программирование представляет собой наиболее часто используемый метод оптимизации.
В настоящее время оптимизация находит применение в науке, технике и в любой другой области человеческой деятельности, особенно, в экономике.
Оптимизация
- целенаправленная деятельность, заключающаяся
в получении наилучших
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решения. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Эти программы и системы снабжены развитыми системами подготовки исходных данных, средствами их анализа и представления полученных результатов.
Итак, линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции.
Существуют различные методы решения задач линейного программирования. В курсовой работе рассмотрим задачи, решаемые графическим способом и решения задач с использованием специального средства – поиск решения.
Самыми распространенными являются графический метод. Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.
Рассмотрим задачу и решим её графическим способом.
Задача 1:
Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится на отдельной технологической линии. Суточный объем первой линии - 60 изделий, второй линии - 80 изделий. На радиоприемник первой модели расходуется 15 однотипных элементов электронных схем, на радиоприемник второй модели - 10 таких же элементов. Максимальный суточный запас используемых элементов равен 950 единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны 40$ и 20$ соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи.
Построение математической модели:
Переменные задачи
В задаче требуется установить, сколько радиоприемников первой и второй модели надо производить. Поэтому искомыми величинами, а значит, и переменными задачи являются суточные объемы производства каждого типа радиоприемников:
– суточный объем производства радиоприемников первой модели, [шт/сутки];
– суточный объем производства радиоприемников второй модели, [шт/сутки];
Целевая функция
Цель задачи – добиться максимального дохода от реализации продукции. Т.е. критерием эффективности служит параметр суточного дохода, который должен стремиться к максимуму. Чтобы рассчитать величину суточного дохода от продажи радиоприемников обоих моделей, необходимо знать:
Таким образом, доход от продажи суточного объема производства радиоприемников первой модели равен $ в сутки, а от продажи радиоприемников второй модели – $ в сутки. Поэтому запишем ЦФ в виде суммы дохода от продажи радиоприемников первой и второй модели:
[$/сутки]
Ограничения
Возможные объемы производства радиоприемников и ограничиваются следующими условиями:
Таким образом, все ограничения задачи делятся на 3 группы, обусловленные:
1)
расходом элементов
2)
суточным объемом
3) неотрицательностью объемов производства.
Запишем
эти ограничения в
[шт/сутки]
[шт/сутки]
.
Таким образом, математическая модель этой задачи имеет вид
Нахождение оптимального решения задачи с помощью линейного метода.
Математическую модель задачи о радиоприёмниках мы нашли на предыдущем шаге:
Построим прямые ограничений, для чего вычислим координаты точек пересечения этих прямых с осями координат (рис.3.1).
прямая (1) – точки (0;95) и (63,(3);0), прямая (2) проходит через точку параллельно оси , прямая (3) проходит через точку параллельно оси .
Рис.3.1. Графическое решение задачи о производстве радиоприемников.
Определим ОДР. Например, подставим точку (0;0) в исходное ограничение (1), получим , что является истинным неравенством, поэтому стрелкой обозначим полуплоскость, содержащую точку (0;0), т.е. расположенную правее и ниже прямой (1). Аналогично определим допустимые полуплоскости для остальных ограничений и укажем их стрелками у соответствующих прямых ограничений (см. рис.3.1). Общей областью, разрешенной всеми ограничениями, т.е. ОДР является многоугольник ABCDE.
Целевую прямую можно построить по уравнению:
Точки пересечения с осями – (0;75) и (37,5;0)
Строим вектор из точки (0;0) в точку (40;20). Точка D – это последняя вершина многоугольника допустимых решений ABCDE, через которую проходит целевая прямая, двигаясь по направлению вектора . Поэтому D – это точка максимума ЦФ. Определим координаты точки D из системы уравнений прямых ограничений (1) и (2)