Автор работы: Пользователь скрыл имя, 03 Ноября 2010 в 11:46, Не определен
В пояснительной записке изложены основы прямого поиска для определения минимума функции n переменных. Выбран метод оптимизации поиска Нелдера-Мида. В расчетной части метод Нелдера-Мида реализован программно, в среде Turbo Pascal, представлены блок схема алгоритма оптимизации, листинг программы.
begin
fg:=f[i];
g:=i;
end;
for j:=1 to n do
begin
xo[j]:=0;
for i:=1 to n+1 do
if i<>h then xo[j]:=xo[j]+s[i,j];
xo[j]:=xo[j]/n;
xh[j]:=s[h,j];
xg[j]:=s[g,j];
xl[j]:=s[l,j];
end;
for j:=1 to n do x[j]:=xo[j];
fo:=z(x[1],x[2],x[3],x[4]);
writeln('Vichisliaem centr tiagest 1120');
for j:=1 to n do
begin
xr[j]:=xo[j]+al*(xo[j]-xh[j]);
x[j]:=xr[j];
end;
fr:=z(x[1],x[2],x[3],x[4]);
writeln('Vipolniaetsia otragenie 1220', z(x[1],x[2],x[3],x[4]):3:5);
if fr<fl then goto 1300;
if fr>fg then goto 1600;
goto 1520;
1300:
for j:=1 to n do
begin
xe[j]:=ga*xr[j]+(1-ga)*xo[j];
x[j]:=xe[j];
end;
fe:=z(x[1],x[2],x[3],x[4]);
if fe<fl then goto 1440;
goto 1520;
1440:
for j:=1 to n do s[h,j]:=xe[j];
f[h]:=fe;
Writeln('Vipolnite rastiagenie 1480', z(x[1],x[2],x[3],x[4]):3:5);
goto 2060;
1520:
for j:=1 to n do s[h,j]:=xr[j];
f[h]:=fr;
writeln('Vipolnenie otragenia 1560');
goto 2060;
1600:
if fr>fh then goto 1700;
for j:=1 to n do xh[j]:=xr[j];
f[h]:=fr;
1700:
for j:=1 to n do
begin
xc[j]:=be*xh[j]+(1-be)*xo[j];
x[j]:=xc[j];
end;
fc:=z(x[1], x[2],x[3],x[4]);
if fc>fh then goto 1920;
for j:=1 to n do s[h,j]:=xc[j];
f[h]:=fc;
writeln('Vipolnenie sjatia 1880', fc:3:5);
goto 2060;
1920:
for i:=1 to n+1 do
begin
for j:=1 to n do
begin
s[i,j]:=(s[i,j]+xl[j])/2;
x[j]:=s[i,j];
end;
f[i]:=z(x[1], x[2],x[3],x[4]);
end;
Writeln('Vipolnenie redikcii 2040');
2060:
s1:=0;
s2:=0;
for i:=1 to n+1 do
begin
s1:=s1+f[i];
s2:=s2+f[i]*f[i];
end;
sig:=s2-s1*s1/(n+1);
sig:=sig/(n+1);
if sig<0.000000001 then goto 2220;
2200:
goto 620;
2220:
Writeln('Minimum naiden v tochke f=', z(x[1],x[2],x[3],x[4]):3:5);
for j:=1 to n do Writeln('x',j,' =',xl[j]:3:5);
Writeln('Kolichestvo vichisleniy ravno ', shag);
readln;
end.
1. M.J. Box, D.Davies and W.H.Swann, “Non-linear Optimization Techniques,” ICI Ltd Monograph No 5, Oliver and Boyd, 1969.
2. R.Hooke and T.A. Jeeves, “Direct search solution of numerical and statistical problem”, 212-219, 1961.