Области применения искусственного интеллекта

Автор работы: Пользователь скрыл имя, 01 Марта 2015 в 18:37, курсовая работа

Описание работы

Другие учёные также работали в области создания ИИ, но им пришлось столкнуться с рядом проблем, которые не могли быть решены в рамках традиционной информатики. Оказалось, что прежде всего должны быть изучены механизмы чувственного восприятия, усвоения информации, а также природа языка. Имитировать работу мозга оказалось крайне сложно, так как для этого пришлось бы воспроизвести работу миллиардов нейронов, взаимодействующих между собой.

Содержание работы

Введение 3
Основная часть 5
1Понятие искусственного интеллекта 5
2 Область применения искусственного интеллекта 12
2.1 Восприятие и распознавание образов 12
2.2 Математика и автоматическое доказательство теорем 13
2.3 Игры 14
2.4 Понимание естественного языка 16
2.5 Машинное творчество 17
2.6 Интеллектуальные интерфейсы 18
2.7 Интеллектуальные роботы 20
2.8 Обучение и самообучение 21
2.9 Выявление и представление знаний экспертов в экспертных системах 22
3 Современный искусственный интеллект 24
3.1 Проблемы связанные с ИИ 24
3.2 Перспективные технологии 25
3.3 ИИ в Стране восходящего солнца 28
3.4 Военные технологии 29
Заключение 33
Глоссарий 35
Список использованных источников 37

Файлы: 1 файл

Области применения искусственного интеллекта.doc

— 289.00 Кб (Скачать файл)

3) На третьем - пятом местах (по популярности) располагаются большие группы различных технологий:

3.1) Нечеткая логика. Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах.

3.2) Обработка изображений. Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений.

Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.

3.3) Экспертные системы. Спрос на экспертные системы остается на достаточно высоком уровне. Наибольшее внимание сегодня привлечено к системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования.

3.4) Интеллектуальные приложения. Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах.

3.5) Распределенные вычисления. Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений - балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем.

3.6) ОС РВ. Появление автономных робототехнических устройств повышает требования к ОС реального времени - организации процессов самонастройки, планирования обслуживающих операций, использования средств ИИ для принятия решений в условиях дефицита времени.

3.7) Интеллектуальная инженерия. Особую заинтересованность в ИИ проявляют в последние годы компании, занимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями, выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач на параллельных системах. Программная инженерия постепенно превращается в так называемую интеллектуальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредоточены на способах превращения информации в знания).

3.8) Самоорганизующиеся СУБД. Самоорганизующиеся СУБД будут способны гибко подстраиваться под профиль конкретной задачи и не потребуют администрирования.

4) Следующая по популярности группа технологий ИИ:

4.1) Автоматический анализ естественных языков (лексический, морфологический, терминологический, выявление незнакомых слов, распознавание национальных языков, перевод, коррекция ошибок, эффективное использование словарей).

4.2) Высокопроизводительный OLAP-анализ и раскопка данных, способы визуального задания запросов.

4.3) Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций.

4.4) Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей.

5) Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики.

Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований - моделирование социального поведения, общения, человеческих эмоций, творчества.

3.3 ИИ в Стране восходящего солнца

Профиль японских конференций (а этой стране принадлежит немало оригинальных и уникальных достижений в области ИИ), не сильно отличается от общемирового. Тем интереснее эти отличия - на них сосредоточены значительные объемы инвестиций государственных и частных японских организаций. Среди направлений, более популярных в Японии в сравнении с европейскими и американскими школами ИИ, отметим следующие: создание и моделирование работы э-рынков и э-ауционов, биоинформатика (электронные модели клеток, анализ белковой информации на параллельных компьютерах, ДНК-вычислители), обработка естественных языков (самообучающиеся многоязычные системы распознавания и понимания смысла текстов), Интернет (интеграция Сети и всевозможных датчиков реального времени в жилых домах, интеллектуальные интерфейсы, автоматизация рутинных работ на основе формализации прикладных и системных понятий Интернета, итерационные технологии выделения нужных сведений из больших объемов данных), робототехника (машинное обучение, эффективное взаимодействие автономных устройств, организация движения, навигация, планирование действий, индексация информации, описывающей движение), способы представления и обработки знаний (повышение качества знаний, методы получения знаний от людей-экспертов, раскопка и поиск данных, решение на этой основе задач реального мира - например, управления документооборотом).

Много работ посвящено алгоритмам логического вывода, обучению роботов, планированию ими действий.

3.4 Военные технологии

Исследования в области нейронных сетей, позволяющих получить хорошие (хотя и приближенные) результаты при решении сложных задач управления, часто финансирует военное научное агентство DARPA. Пример - проект Smart Sensor Web, который предусматривает организацию распределенной сети разнообразных датчиков, синхронно работающих на поле боя. Каждый объект (стоимостью не более $300) в такой сети представляет собой источник данных - визуальных, электромагнитных, цифровых, инфракрасных, химических и т. п. Проект требует новых математических методов решения многомерных задач оптимизации. Ведутся работы по автоматическому распознаванию целей, анализу и предсказанию сбоев техники по отклонениям от типовых параметров ее работы (например, по звуку).

Операция "Буря в пустыне" стала стимулом к развитию экспертных систем с продвинутым ИИ, применяемым в области снабжения. На разработках, связанных с технологиями машинного зрения, основано все высокоточное оружие.

В СМИ нередко можно прочитать о грядущих схватках самостоятельно действующих армий самоходных машин-роботов и беспилотных самолетов. Однако существует ряд нерешенных научных проблем, не позволяющих в ближайшие десятилетия превратить подобные прогнозы в реальность. Прежде всего это недостатки систем автоматического распознавания, не способных правильно анализировать видеоинформацию в масштабе реального времени. Не менее актуальны задачи разрешения коллизий в больших сообществах автономных устройств, абсолютно точного распознавания своих и чужих, выбора подлежащих уничтожению целей, алгоритмов поведения в незнакомой среде и т. п. Поэтому на практике военные пытаются достичь менее масштабных целей. Значительные усилия вкладываются в исследования по распознаванию речи, создаются экспертные и консультационные системы, призванные автоматизировать рутинные работы и снизить нагрузку на пилотов. Нейронные сети достаточно эффективно применяются для обработки сигналов сонаров и отличения подводных камней от мин. Генетические алгоритмы используются для эвристического поиска решения уравнений, определяющих работу военных устройств (систем ориентации, навигации), а также в задачах распознавания - для разделения искусственных и естественных объектов, распознавания типов военных машин, анализа изображения, получаемого от камеры с низким разрешением или инфракрасных датчиков.

Ключевым фактором, определяющим сегодня развитие ИИ-технологий, считается темп роста вычислительной мощности компьютеров, так как принципы работы человеческой психики по-прежнему остаются неясными (на доступном для моделирования уровне детализации). Поэтому тематика ИИ-конференций выглядит достаточно стандартно и по составу почти не меняется уже довольно давно. Но рост производительности современных компьютеров в сочетании с повышением качества алгоритмов периодически делает возможным применение различных научных методов на практике. Так случилось с интеллектуальными игрушками, так происходит с домашними роботами.

Снова будут интенсивно развиваться временно забытые методы простого перебора вариантов (как в шахматных программах), обходящиеся крайне упрощенным описанием объектов. Но с помощью такого подхода (главный ресурс для его успешного применения - производительность) удастся решить, как ожидается, множество самых разных задач (например, из области криптографии). Уверенно действовать автономным устройствам в сложном мире помогут достаточно простые, но ресурсоемкие алгоритмы адаптивного поведения. При этом ставится цель разрабатывать системы, не внешне похожие на человека, а действующие, как человек.

Ученые пытаются заглянуть и в более отдаленное будущее. Можно ли создать автономные устройства, способные при необходимости самостоятельно собирать себе подобные копии (размножаться)? Способна ли наука создать соответствующие алгоритмы? Сможем ли мы контролировать такие машины? Ответов на эти вопросы пока нет.

Продолжится активное внедрение формальной логики в прикладные системы представления и обработки знаний. В то же время такая логика не способна полноценно отразить реальную жизнь, и произойдет интеграция различных систем логического вывода в единых оболочках. При этом, возможно, удастся перейти от концепции детального представления информации об объектах и приемов манипулирования этой информацией к более абстрактным формальным описаниям и применению универсальных механизмов вывода, а сами объекты будут характеризоваться небольшим массивом данных, основанных на вероятностных распределениях характеристик.

Сфера ИИ, ставшая зрелой наукой, развивается постепенно - медленно, но неуклонно продвигаясь вперед. Поэтому результаты достаточно хорошо прогнозируемы, хотя на этом пути не исключены и внезапные прорывы, связанные со стратегическими инициативами. Например, в 80-х годах национальная компьютерная инициатива США вывела немало направлений ИИ из лабораторий и оказала существенное влияние на развитие теории высокопроизводительных вычислений и ее применение во множестве прикладных проектов. Такие инициативы будут появляться скорее всего на стыках разных математических дисциплин - теории вероятности, нейронных сетей, нечеткой логики.

 Заключение

В научном сообществе не прекращаются споры о возможности создания искусственного интеллекта. По мнению многих, создание ИИ повлечёт за собой унижение человеческого достоинства. Говоря о возможностях ИИ, нельзя забывать о необходимости развития и совершенствования человеческого интеллекта.

Преимущества использования ИИ состоят в том, что оно даёт стимул к дальнейшему прогрессу, а также намного повышает продуктивность труда путём автоматизации производства. Но при всех плюсах у кибернетики имеются и некоторые минусы, которым человечество должно уделять самое пристальное внимание. Главный минус заключается в опасности, которую может вызвать работа с ИИ. Ещё одна проблема связана с тем, что люди могут утратить стимул к творческой деятельности. Компьютеры повсеместно используются в сфере искусств, и создаётся впечатление, что они вытесняют из этой сферы людей. Остаётся надеяться, что квалифицированная творческая деятельность по-прежнему будет привлекательной для человека, и что самые лучшие музыкальные, литературные и живописные произведения по-прежнему будут создаваться людьми.

Есть и ещё одна группа проблем, более серьёзная. Современные машины и программы обладают способностью приспосабливаться к изменяющимся внешним факторам, то есть обучаться. Совсем скоро будут разработаны машины с такой степенью приспособляемости и надежности, которая позволит человеку не вмешиваться в процесс принятия решений. Это может привести к тому, что люди окажутся неспособными адекватно действовать в случае возникновения чрезвычайной ситуации. Возможно и такое, что в случае ЧС человек не сможет принять на себя функции управления в тот момент, когда это будет необходимо. Это значит, что уже сейчас стоит задуматься о введении некоторых пределов автоматизации процессов, особенно тех, которые связаны с возникновением тяжёлых аварийных ситуаций. В таком случае человек, контролирующий управляющую машину, сможет правильно отреагировать и принять подходящее решение для той или иной непредвиденной ситуации.

Такие ситуации могут возникать в сфере транспорта, в ядерной энергетике и ракетных войсках. В последнем случае ошибка может привести к ужасным последствиям. Но вероятность ошибок всегда существует и остаётся даже в случае дублирования и многократных перепроверок. Это значит, что необходимо присутствие оператора, контролирующего машину.

Уже сейчас очевидно, что людям постоянно придется решать проблемы, связанные с искусственным интеллектом, так они появляются сейчас и будут появляться в дальнейшем.

 

Глоссарий

№ п/п

Понятие

Определение

1.

Искусственный интеллект

совокупность научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.

2.

Кибернетика

наука об управлении, связи и переработке информации.

3.

Когнитология

это сфера деятельности, связанная с анализом знания и обеспечением его (знания) дальнейшего развития.

4.

Нейрокибернетика

научное направление, изучающее основные закономерности организации и функционирования нейронов и нейронных образований.

5.

Нейронная сеть

математическая модель, построенная по принципу функционирования и организации биологической нейронной сети.

6.

Робот

автоматическое устрой, созданное по принципу живого организма.

7.

Системы искусственного интеллекта (СИИ)

это системы, созданные на базе ЭВМ, которые имитируют решение человеком сложных интеллектуальных задач.

8.

Скорость обучения 

это простое и конструктивное испытание интеллекта, которое можно использовать в качестве теста уровня сознания живого существа или машины.

9.

Скриптинг

написание сценариев (скриптов) на интерпретируемых языках программирования

10.

Экспертная система

компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации.

Информация о работе Области применения искусственного интеллекта