Нейросетевая реализация системы автономного адаптивного управления

Автор работы: Пользователь скрыл имя, 10 Ноября 2010 в 15:56, Не определен

Описание работы

Формальная модель нейрона и нейросети

Файлы: 1 файл

Нейросетевая реализация системы.doc

— 627.00 Кб (Скачать файл)

     Как одну из моделей среды для исследований свойств ААУ мы предлагаем взять  конечный автомат [КА]. КА является широко известным, хорошо изученным, понятным и удобным при моделировании среды объектом по следующим соображениям: 1) различные состояния среды естественным образом отображаются в состояния КА; 2) переходы из одного состояния среды в другое под воздействием УС и других объектов естественным образом отображаются в переходы КА между состояниями при чтении входного слова. Отметим, что среди известных и распространенных КА наиболее подходящими для модели являются автоматы Мура и недетерминированные автоматы Рабина-Скотта или НРС-автоматы. Правда, модели, основанные на первых, нуждаются в дополнительном  введении стохастических источников, а НРС-автоматы нуждаются в модификации, поскольку реальные среды являются недетерминированными объектами. Более того, недетерминированность модели среды необходима для обучения УС. В самом деле, если бы реакция среды была полностью детерминированной и зависела только от воздействий на нее УС, то УС, найдя первый закон управления, использовала бы только его при выборе управляющих воздействий, так как по критериям системы управления лучше использовать хоть какой-нибудь закон управления и получить относительно гарантированный результат, чем продолжать поиски методом проб и ошибок. Получился бы замкнутый порочный круг: система воздействует на среду только одним способом, среда детерминированно реагирует на это воздействие, УС видит только одну реакцию (которая может быть не самой лучшей) и пытается вызвать только эту реакцию. Избежать таких «зацикливаний» можно посредством моделирования недетеминированной реакции среды.

     Приведем  определение автоматов Мура [КА] и введем модифицированные НРС-автоматы.

    Определение 2.1. (Конечный) автомат Мура есть пятерка А = (Z, X, Y, f, h). Здесь Zмножество состояний, X множество входов, Yмножество выходовfфункция переходов, и hфункция выходов, - сюръективное отображение.

     Автомат работает по следующему принципу. Если КА находится в некотором состоянии  , то выход автомата определяется функцией выхода. Выход автомата интерпретируется в данном случае как реакция среды, которая, возможно, с некоторыми преобразованиями в блоке датчиков может быть подана на вход аппарата формирования и распознавания образов как двоичный вектор. В каждый момент времени автомат читает входное слово, которое интерпретируется как суммарное воздействие со стороны УС и других внешних объектов. Множество входов может быть шире чем множество допустимых воздействий на среду со стороны УС и включать в себя слова или команды, которые могут подаваться со стохастических источников, находящихся внутри среды. По прочитанному входному слову и функции переходов определяется состояние в следующий момент времени.

    Определение 2.2. (Конечный) модифицированный недетерминированный автомат Рабина-Скотта (МНРС) есть семерка А = (Z, X, T, S, F, h, p). Здесь Z и X – конечные множества (состояний и входов соответственно; X называют также входным алфавитом автомата А); (множества начальных и финальных состояний соответственно); , где , (иначе говоря T – многозначное отображение с конечной областью определения); h – то же, что и для автомата Мура; pфункция вероятности переходов, , причем

      .                                                                  (2.1)

     Отметим, что мы рассматриваем только неалфавитные МНРС, т.е. КА, у которых нет переходов для пустого слова : , а, следовательно, нет и спонтанных переходов. Отличительной особенностью МНРС является неоднозначность переходов или возможность соответствия одной и той же паре состояние - входное слово нескольких переходов и приписанной каждому переходу вероятности. Условие (2.1) означает, что сумма вероятностей всех переходов из любого состояния есть 1.

     Отличие принципа действия МНРС от автомата Мура состоит в том, что, когда автомат  находится в некотором состоянии  и прочел входное слово, то реализуется  один из возможных из данного состояния  и при данном входном слове переход, при этом вероятность реализации перехода определяется функцией p.

     Приведенные две модели среды с двумя разными  КА не являются эквивалентными и задают разные модели поведения. Очевидно, что  любая модель с автоматом Мура может быть смоделирована моделью с МНРС, причем обратное утверждение для любой модели неверно. Автомат Мура проще в реализации и исследованиях, а с помощью МНРС можно построить более точную модель среды.

 

    3. Аппарат формирования и распознавания образов.

3.1. Биологический нейрон.
 

      На  рис. 3.1.1, взятом из [Turchin] представлен в упрощенном виде биологический нейрон. Схематично его можно разделить на три части: тело клетки, содержащее ядро и клеточную протоплазму; дендриты – древовидные отростки, служащие входами нейрона; аксон, или нервное волокно, - единственный выход нейрона, представляющий собой длинный цилиндрический отросток, ветвящийся на конце. Для описания формальной модели нейрона выделим следующие факты:

           Рис. 3.1.1

 
  1. В любой  момент возможны лишь два состояния волокна: наличие импульса и его отсутствие, так называемый закон «все или ничего».
  2. Передача выходного сигнала с аксона предыдущего нейрона на дендриты или прямо на тело следующего нейрона осуществляется в специальных образованиях – синапсах. Входные сигналы суммируются с синаптическими задержками и в зависимости от суммарного потенциала генерируется либо нет выходной импульс – спайк.
3.2. Формальная модель нейрона.
 

     Впервые формальная логическая модель нейрона  была введена Маккалоком и Питтсом  в 1948 году [Маккалок] и с тех пор было предложено огромное количество моделей. Но все они предназначены для решения в основном задач распознавания и классификации образов. Можно указать целый ряд основных отличий предлагаемой в данной работе модели и уже существующих. Во-первых, в классических моделях всегда присутствует «учитель» или «супервизор», подстраивающий параметры сети по определенному  алгоритму, предлагаемый же нейрон должен подстраиваться «сам» в зависимости от «увиденной» им последовательности входных векторов. Формально говоря, при работе нейрона должна использоваться только информация с его входов. Во-вторых, в предложенной модели нет вещественных весов и взвешенной суммации по этим весам, что является большим плюсом при создании нейрочипа и модельных вычислениях, поскольку целочисленная арифметика выполняется всегда быстрее, чем рациональная и проще в реализации. Главное же отличие предлагаемой модели состоит в цели применения. C помощью нее решаются все задачи управляющей системы: формирование и распознавание образов (ФРО), распознавание и запоминание закономерностей (БЗ), анализ информации БЗ и выбор действий (БПР), в отличии от классических моделей, где решается только первая задача.

     Важной  задачей ФРО для автономных систем также является не только распознавание образов, но и их хранение или запоминание. Это следует из автономности системы, т.к. для неавтономных систем распознанные образы могут храниться и использоваться вне системы. Вообще говоря, проблему запоминания можно решить множеством способов. Например, один из известных способов – организовать кольцо из нейронов, в котором сигнал мог бы прецессировать до бесконечности или в течении некоторого времени в случае затухания. В последнем случае система приобретает новое полезное свойство «забывчивости», которое, как известно, присуще биологическим системам и позволяет более рационально и экономно использовать ресурсы, т.к. ненужная или малоиспользуемая информация просто «забывается». Эксперименты проводились с формальной моделью без памяти, но очевидно, что она нужна. Нами предлагается ввести так называемую синаптическую память, т.е. способность запоминать входной сигнал в синаптическом блоке. 
 

   

       x1t                   D1             T1                        y1 t

                               D1             t1        Rw

                      y2 t             bwt+1 

       x2t                   D2             T2                ...

                 D2             t2                                                                      Owt+1

                                                             &    

                  cwt+1             

             .  .      . 

             .  .      . 

             .             .                .    

    xmt                  Dm             Tm  ymt

                Dm             tm 
       
       

   Рис. 3.2.1 

     В данной работе мы используем нейрон из [Жданов2], который модифицирован в соответствии с [Братищев]. Мы приведем лишь краткое описание. На рис. 3.2.1 представлена блочная схема предлагаемой формальной модели нейрона. Входы нейрона xit подаются на блоки задержки Di  для задержки сигнала на время Di , а затем на триггерные элементы Ti  для удлинения сигнала на величину ti . Данные элементы обеспечивают некоторую неопределенность момента поступления входного сигнала по отношению к моменту генерации выходного спайка и образуют таким образом синаптическую память, поскольку входной сигнал запоминается в этих элементах на некоторое время.

     С учетом задержек Di и ti получаем, что, если на выходе обученного нейрона в момент t появился единичный сигнал, то единичные импульсы на входы нейрона поступили в интервалы времени  di = [ t - ti - Di ; t - Di -1]. Неопределенность моментов поступления входных импульсов будет тем меньше, чем меньше задержки ti.

     Пример  временной диаграммы работы обученного нейрона с двумя входами и с заданными задержками Di и ti  иллюстрирует рис. 3.2.2. Вопросительными знаками показаны неопределенности моментов прихода входных импульсов, соответствующие интервалам di.  

                                       

                                                        

                            x1            ?   ?   ?      

                       x2                           ?   ?   

                        y1 

                        y2                                                       

                         c1 

                                     

                                 1  2   3   4   5   6   7   8  9 10  11 12        t 

   Рис. 3.2.2. 
 

     Различное отношение и расположение задержек Di и ti во времени наделяет нейрон возможностями формирования и распознавания образов следующих видов.

       Если  , то имеем пространственный образ. Например, образ некоторой геометрической фигуры.

       Если  , то имеем образ следования (важен порядок следования образующих, допустима неопределенность в конкретных моментах прихода импульсов). Примером может быть распознавание слов при чтении по буквам.

Информация о работе Нейросетевая реализация системы автономного адаптивного управления