Автор работы: Пользователь скрыл имя, 21 Апреля 2010 в 17:12, Не определен
Введение………………………………………………………………………..3
1.История развития нейронных сетей………………………………………...4
2.Устройство нейронных сетей………………………………………………..6
3.Функции активации………………………………………………………….7
4.Типы архитектур нейросетей………………………………………………..8
5.Обучение многослойной сети………………………………………………..12
6.Обратное распространение ошибки…………………………………………14
7..Организация процесса обучения……………………………………………16
Заключение……………………………………………………………………...17
5. Обучение многослойной сети
Главное отличие и преимущество нейросетей перед классическими средствами прогнозирования и классификации заключается в их способности к обучению. Так что же такое обучение нейросетей? На этапе обучения происходит вычисление синоптических коэффициентов в процессе решения нейронной сетью задач, в которых нужный ответ определяется не по правилам, а с помощью примеров, сгруппированных в обучающие множества. Так что нейросеть на этапе обучения сама играет роль эксперта в процессе подготовки данных для построения экспертной системы. Предполагается, что правила находятся в структуре обучающих данных. Для обучения нейронной сети требуются обучающие данные. Они должны отвечать свойствам представительности и случайности или последовательности. Все зависит от класса решаемой задачи. Такие данные представляют собой ряды примеров с указанием для каждого из них значением выходного параметра, которое было бы желательно получить. Действия, которые при этом происходят, можно назвать контролируемым обучением: "учитель" подает на вход сети вектор исходных данных, а на выходной узел сообщает желаемое значение результата вычислений.
Контролируемое обучение
где М - число примеров в обучающем множестве. Минимизация величины Е осуществляется с помощью градиентных методов. Изменение весов происходит в направлении, обратном к направлению наибольшей крутизны для функции:
Здесь
? - определяемый пользователем параметр,
который называется коэффициентом
обучения.
6. Обратное распространение ошибки
Одним из самых распространенных алгоритмов обучения нейросетей прямого распространения является алгоритм обратного распространения ошибки (Back Propagation, BP). Этот алгоритм был переоткрыт и популяризован в 1986 г. Румельхартом и МакКлелландом из группы по изучению параллельных распределенных процессов в Массачусетском технологическом институте. Здесь я хочу подробно изложить математическую суть алгоритма, так как очень часто в литературе ссылаются на какой-то факт или теорему, но никто не приводит его доказательства или источника. Честно говоря, то же самое относится к теореме об отображении нейросетью любой функциональной зависимости, на которой основываются все попытки применить нейросети к моделированию реальных процессов. Приведём алгоритм работы нейросети Итак, это алгоритм градиентного спуска, минимизирующий суммарную квадратичную ошибку:
Здесь
индекс i пробегает все выходы многослойной
сети. Основная идея ВР состоит в
том, чтобы вычислять
где ? - длина шага в направлении, обратном к градиенту
Если
рассмотреть отдельно k-тый образец,
то соответствующее изменение
Множитель вычисляется через аналогичные множители из последующего слоя, и ошибка, таким образом, передается в обратном направлении. Для выходных элементов получим:
Для скрытых элементов множитель определяется так:
где индекс h пробегает
номера всех нейронов, на которые воздействует
i-ый нейрон.
7. Организация процесса обучения
Из теоремы об отображении
практически любой функции с
помощью многослойной
Литература: