Нейрокомпьютеры: история возникновения и перспективы развития

Автор работы: Пользователь скрыл имя, 24 Ноября 2015 в 22:45, реферат

Описание работы

В настоящее время разработка нейрокомпьютеров ведется в большинстве промышленно развитых стран. Нейрокомпьютеры позволяют с высокой эффективностью решать целый ряд интеллектуальных задач. Это задачи распознавания образов, адаптивного управления, прогнозирования, диагностики и т.д. Нейрокомпьютеры отличаются от ЭВМ предыдущих и поколений не просто большими возможностями.

Содержание работы

1. Введение.
2. История нейрокомпьютеров.
3. Применение нейрокомпьютеров.
3.1. Преимущества и недостатки.
3.2. Практическое применение нейрокомпьютеров.
3.2.1. Сферы применения.
3.2.2. Применение нейрокомпьютеров в финансовой и экономической деятельности.
4. Перспективы развития нейрокомпьютеров.
5. Заключение.
Список используемой литературы.

Файлы: 1 файл

Реферат по информатике.Чесноков.docx

— 32.10 Кб (Скачать файл)

5. Применение нейронных сетей  к задачам анализа биржевой  деятельности.

- нейросетевая система распознавания  всплесков биржевой активности - анализ деятельности биржи на  основе нейросетевой модели 

- предсказание цен на товары  и сырье с выделением трендов  вне зависимости от инфляции  и сезонных колебаний - нейросетевая  система выделения трендов по  методикам <японских свечей> и  других гистографических источников  отображения информации

Для задач биржевой деятельности наиболее интересным представляется построение системы распознавания природы биржевых событий и выделение основных закономерностей, то есть поиск взаимосвязи резкого изменения биржевой цены и биржевой активности в зависимости от биржевой игры или инфляционных процессов. Эффективным может быть применение нейронной сети для предсказания цен на товары и сырье вне зависимости от сезона и уровня инфляции (выделение трендов).

6. Прогнозирование экономической  эффективности финансирования экономических  и инновационных проектов.

- предсказание на основе анализа  реализованных ранее проектов;

- предсказание на основе соответствия  предлагаемого проекта экономической  ситуации

В первом случае используется способность нейронных сетей к предсказанию на основе временных рядов, во втором - построения нелинейной модели на базе нейронной сети.

7. Предсказание результатов займов.

- определение возможности кредитования  предприятий 

- предоставление кредитов и  займов без залога

Используется (в редком случае) при предоставлении займов без залога на основе анализа дополнительной информации о потребителе кредитов. Оценивает риск займа на основе построения нелинейной модели. Имеющаяся информация основана на исследованиях, производимых международными финансовыми группами.

8. Общие приложения нейронных  сетей 

- применение нейронных сетей  в задачах маркетинга и розничной  торговли

Одно из самых <модных> применений нейрокомпьютеров в финансовой области. Один из решаемых вопросов - установление цены на новый вид товара на основе многокритериальной оценки.

- моделирование динамики цен  на сельскохозяйственную продукцию  в зависимости от климатических  условий 

- моделирование работы коммунальных  служб на основе нейросетевой  модели для многокритериального  анализа 

- построение модели структуры  расходов семьи.

 

4. Перспективы развития нейрокомпьютеров.

Многолетние усилия многих исследовательских групп привели к тому, что к настоящему моменту накоплено большое число различных «правил обучения» и архитектур нейронных сетей, их аппаратных реализаций и приёмов использования нейронных сетей для решения прикладных задач.

Эти интеллектуальные изобретения существуют в виде «зоопарка» нейронных сетей. Каждая сеть из зоопарка имеет свою архитектуру, правило обучения и решает конкретный набор задач. В последнее десятилетие прилагаются серьёзные усилия для стандартизации структурных элементов и превращений этого «зоопарка» в «технопарк»: каждая нейронная сеть из зоопарка реализована на идеальном универсальном нейрокомпьютере, имеющем заданную структуру.

Основные правила выделения функциональных компонентов идеального нейрокомпьютера (по Миркесу):

· Относительная функциональная обособленность: каждый компонент имеет чёткий набор функций. Его взаимодействие с другими компонентами может быть описано в виде небольшого числа запросов.

· Возможность взаимозамены различных реализаций любого компонента без изменения других компонентов.

Постепенно складывается рынок нейрокомпьютеров. В настоящее время широко распространены различные высокопараллельные нейро-ускорители (сопроцессоры) для различных задач. Моделей универсальных нейрокомпьютеров на рынке мало отчасти потому, что большинство из них реализованы для спецприменений. Примерами нейрокомпьютеров являются нейрокомпьютер Synapse (Siemens, Германия), процессор NeuroMatrix. Издаётся специализированный научно-технический журнал «Нейрокомпьютеры: разработка, применение». С технической точки зрения сегодняшние нейрокомпьютеры — это вычислительные системы с параллельными потоками одинаковых команд и множественным потоком данных (MSIMD-архитектура). Это одно из основных направлений развития вычислительных систем с массовым параллелизмом.

Искусственная нейронная сеть может передаваться от (нейро)компьютера к (нейро)компьютеру, так же как и компьютерная программа. Более того, на её основе могут быть созданы специализированные быстродействующие аналоговые устройства. «Выделяются несколько уровней отчуждения нейронной сети от универсального (нейро)компьютера: от сети, обучающейся на универсальном устройстве и использующей богатые возможности в манипулировании задачником, алгоритмами обучения и модификации архитектуры, до полного отчуждения без возможностей обучения и модификации, только функционирование обученной сети.»[6]

Одним из способов подготовки нейронной сети для передачи является её вербализация: обученную нейронную сеть минимизируют с сохранением полезных навыков. Описание минимизированной сети компактнее и часто допускает понятную интерпретацию.

В нейрокомпьютинге постепенно созревает новое направление, основанное на соединении биологических нейронов с электронными элементами. По аналогии с Software (программное обеспечение — «мягкий продукт») и Hardware (электронное аппаратное обеспечение — «твёрдый продукт»), эти разработки получили наименование Wetware «влажный продукт».

В настоящее время уже существует технология соединения биологических нейронов со сверхминиатюрными полевыми транзисторами с помощью нановолокон (Nanowire). В разработках используется современная нанотехнология. В том числе, для создания соединений между нейронами и электронными устройствами используются углеродные нанотрубки.

(Распространено также и другое  определение термина «Wetware» —  человеческий компонент в системах  «человек-компьютер».)

 

 

5. Заключение

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки.

Такие системы основывались на высокоуровневом моделировании процесса мышления на обычных компьютерах. Скоро стало ясно, чтобы создать искусственный интеллект, необходимо построить систему с похожей на естественную архитектурой, т. е. перейти от программной реализации процесса мышления к аппаратной.

Естественным продолжением аппаратного и программного подхода к реализации нейрокомпьютера является программно-аппаратный подход.

Аппаратный подход связан с созданием нейрокомпьютеров в виде нейроподобных структур (нейросетей) электронно-аналогового, оптоэлектронного и оптического типов. Для таких компьютеров разрабатываются специальные СБИС (нейрочипы).

Основу нейросетей составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга - искусственные нейроны. Нейрон обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон - выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости в электрических связях.

Для решения отдельных типов задач существуют оптимальные конфигурации нейронных сетей. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом слоев нейронов. Одной из важных особенностью нейронной сети является возможность к обучению. Обучение нейросети может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы нейросети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. После обучения на достаточно большом количестве примеров можно использовать обученную сеть для прогнозирования, предъявляя ей новые входные значения. Это важнейшее достоинство нейрокомпьютера, позволяющие ему решать интеллектуальные задачи, накапливая опыт.

 

 

Список используемой литературы

1. Галушкин А.И. Некоторые  исторические аспекты развития  элементной базы вычислительных  систем с массовым параллелизмом (80- и 90-е годы) // Нейрокомпьютер. 2000. № 1

2. Власов А.И. Нейросетевая  реализация микропроцессорных систем  активной акусто- и виброзащиты // Нейрокомпьютеры: разработка и применение. 2000. № 1.

3. Ф.Уоссермен, Нейрокомпьютерная  техника, М.,Мир, 1992.

4. Итоги науки и техники: физические и математические  модели нейронных сетей, том 1, М., изд. ВИНИТИ, 1990.

5. http://ru.wikipedia.org/wiki/Нейрокомпьютер

6. http://www.chipinfo.ru/literature/chipnews/200005/34.html

7. http://works.tarefer.ru/30/100032/index.html

8. http://www.tiptoptech.net/neirokomputer.html

9. http://www.iam.ru/world/neuron.htm

10. http://www.intuit.ru/department/expert/neurocomputing/2/2.html

 

[1] http://ru.wikipedia.org/wiki/Нейрокомпьютер

[2] http://ru.wikipedia.org/wiki/Нейрокомпьютер

[3] http://works.tarefer.ru/30/100032/index.html

[4] Уоссермен Ф., Нейрокомпьютерная техника - М., Изд. «Мир», 1992. – С.93

[5] http://www.chipinfo.ru/literature/chipnews/200005/34.html

[6] http://ru.wikipedia.org/wiki/Нейрокомпьютер

 

 

 


Информация о работе Нейрокомпьютеры: история возникновения и перспективы развития