Автор работы: Пользователь скрыл имя, 14 Января 2013 в 03:09, реферат
Многомерное шкалирование (МНШ) можно рассматривать как альтернативу факторному анализу. Целью последнего, вообще говоря, является поиск и интерпретация "латентных (т.е. непосредственно не наблюдаемых) переменных", дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Для определенности и краткости, далее, как правило, будем говорить лишь о сходствах объектов, имея ввиду, что на практике это могут быть различия, расстояния или степени связи между ними.
1. Общая цель 3
2. Логика многомерного шкалирования 4
3. Вычислительные методы 5
4. Задание размерности пользователем 6
5. Интерпретация осей координат 10
6. Приложения 12
7. Многомерное шкалирование и факторный анализ 13
Литература 13
Министерство образования и науки, молодежи и спорта Украины
Днепропетровский национальный
университет имени Олеся
Кафедра математического обеспечения ЭВМ
Реферат
На тему: «Многомерное шкалирование»
Выполнил:
студент группы ПЗ-11у-1
Традунский Вячеслав Валерьевич
Днепропетровск
2012 у. г.
Содержание
1. Общая цель 3
2. Логика многомерного шкалирования 4
3. Вычислительные методы 5
4. Задание размерности пользователем 6
5. Интерпретация осей координат 10
6. Приложения 12
7. Многомерное шкалирование и факторный анализ 13
Литература 13
Многомерное шкалирование (МНШ) можно рассматривать как альтернативу факторному анализу. Целью последнего, вообще говоря, является поиск и интерпретация "латентных (т.е. непосредственно не наблюдаемых) переменных", дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Для определенности и краткости, далее, как правило, будем говорить лишь о сходствах объектов, имея ввиду, что на практике это могут быть различия, расстояния или степени связи между ними. В факторном анализе сходства между объектами (например, переменными) выражаются с помощью матрицы (таблицы) коэффициентов корреляций. В методе МНШ дополнительно к корреляционным матрицам, в качестве исходных данных можно использовать произвольный тип матрицы сходства объектов. Таким образом, на входе всех алгоритмов МНШ используется матрица, элемент которой на пересечении ее i-й строки и j-го столбца, содержит сведения о попарном сходстве анализируемых объектов (объекта [i] и объекта [j]). На выходе алгоритма МНШ получаются числовые значения координат, которые приписываются каждому объекту в некоторой новой системе координат (во "вспомогательных шкалах", связанных с латентными переменными, откуда и название МНШ), причем размерность нового пространства признаков существенно меньше размерности исходного (за это собственно и идет борьба).
Логику МНШ можно
В общем случае метод МНШ
позволяет таким образом
Ориентация осей координат. Как и в Факторном анализе, ориентация осей может быть выбрана произвольной. Возвращаясь к нашему примеру, можно поворачивать карту США произвольным образом, но расстояния между городами при этом не изменятся. Таким образом, окончательная ориентация осей на плоскости или в пространстве является, в большей степени результатом содержательного решения в конкретной предметной области (т.е. решением пользователя, который выберет такую ориентацию осей, которую легче всего интерпретировать). В примере можно было бы выбрать ориентацию осей, отличающуюся от пары Север/Юг и Восток/Запад, однако последняя удобнее, как "наиболее осмысленная" и естественная.
Многомерное шкалирование - это не просто определенная процедура, а скорее способ наиболее эффективного размещения объектов, приближенно сохраняющий наблюдаемые между ними расстояния. Другими словами, МНШ размещает объекты в пространстве заданной размерности и проверяет, насколько точно полученная конфигурация сохраняет расстояния между объектами. Говоря более техническим языком, МНШ использует алгоритм минимизации некоторой функции, оценивающей качество получаемых вариантов отображения.
Меры качества отображения: стресс. Мерой, наиболее часто используемой для оценки качества подгонки модели (отображения), измеряемого по степени воспроизведения исходной матрицы сходств, является так называемый стресс. Величина стресса Phi в для текущей конфигурации определяется так:
Phi = [dij - f (δij)]2
Здесь dij - воспроизведенные расстояния в пространстве заданной размерности, а δij - исходное расстояние. Функция f(δij)обозначает неметрическое монотонное преобразование исходных данных (расстояний). Таким образом, МНШ воспроизводит не количественные меры сходств объектов, а лишь их относительный порядок.
Обычно используется одна
из несколько похожих мер
Диаграмма Шепарда. Можно построить для текущей конфигурации точек график зависимости воспроизведенных расстояния от исходных расстояний. Такая диаграмма рассеяния называется диаграммой Шепарда. По оси ординат OY показываются воспроизведенные расстояния (сходства), а по оси OX откладываются истинные сходства (расстояния) между объектами (отсюда обычно получается отрицательный наклон). На этом график также строится график ступенчатой функции. Ее линия представляет так называемые величины D-с крышечкой, то есть, результат монотонного преобразования f(δij) исходных данных. Если бы все воспроизведенные результирующие расстояния легли на эту ступенчатую линию, то ранги наблюдаемых расстояний (сходств) был бы в точности воспроизведен полученным решением (пространственной моделью). Отклонения от этой линии показывают на ухудшение качества согласия (т.е. качества подгонки модели).
Вообще говоря, чем больше
размерность пространства, используемого
для воспроизведения
Причины плохого качества отображения. Обсудим, почему уменьшение числа факторов (или вспомогательных шкал) может приводить к ухудшению представления исходной матрицы. Обозначим буквами A, B, C и D, E, F две тройки городов. Соответствующие им точки и попарные расстояния между ними показаны в двух табличках (матрицах).
A |
B |
C |
D |
E |
F | |||
A |
0 |
D |
0 |
|||||
B |
90 |
0 |
E |
90 |
0 |
|||
C |
90 |
90 |
0 |
F |
180 |
90 |
0 |
Первой матрице соответствует случай когда города удалены друг от друга в точности на 90 километров, а второй - когда города D и F удаляются на 180 километров. Можно ли три точки, соответствующие городам (объектам) расположить в одномерном пространстве (на прямой)? Действительно, три точки, соответствующие городам D, E и F могут быть расположены на прямой линии:
D---90 км---E---90 км---F
D удален на 90 км от города E, и E - на 90 км от F, а город D удален на 90+90=180 км от F. Если попытаться проделать тоже самое с городами A, B и C, то видно, что соответствующие им точки уже нельзя разместить на прямой с сохранением исходной структуры расстояний. Однако эти точки можно расположить на плоскости, например, в виде треугольника:
A | ||
90 км |
90 км | |
B |
90 км |
C |
Располагая эти три точки так, можно в точности воспроизвести все расстояния между ними. Без лишних деталей, этот пример показывает, как конкретная матрица расстояний (сходств) связана с числом искомых латентных переменных (размерностью результирующего пространства). Конечно, "реальные" данные никогда не являются такими "точными", и содержат случайный шум, т.е. случайную изменчивость, влияющую на различие между воспроизведенной и исходной матрицей.
Критерий "каменистой осыпи". Обычно, для выбора размерности пространства, в котором будет воспроизводится наблюдаемая матрица, используют график зависимости стресса от размерности (график каменистой осыпи). Этот критерий впервые был предложен Кэттелом (Cattell (1966)) в контексте решения задачи снижения размерности в факторном анализе; Краскал и Виш (Kruskal and Wish (1978; стр. 53-60)) обсуждали применение этого графика в методе МНШ.
Кэттел предложил найти такую абсциссу на графике (в методе ФА, по оси абсцисс идут собственные значения), в которой график стресса начинает визуально сглаживаться в направлении правой, пологой его части, и, таким образом, уменьшение стресса максимально замедляется. Образно говоря, линия на рисунке напоминает скалистый обрыв, а черные точки на графике напоминают камни, которые ранее упали вниз. Таким образом, внизу наблюдается как бы каменистая осыпь из таких точек. Справа от выбранной точки на оси абсцисс, лежит только "факторная осыпь". Согласно этому критерию, на приведенном рисунке, скорее всего, следует выбрать для воспроизведения двумерное пространство.
Интерпретируемость конфигурации. Вторым критерием для решения вопроса о размерности с целью интерпретации является "ясность" полученной конфигурации точек. Иногда, как в нашем примере с городами, результирующие координаты легко интерпретируются. В других случаях, точки на графике могут образовывать ту или иную разновидность "случайного облака", и не существует непосредственного способа для интерпретации латентных переменных. В последнем случае следует постараться немного увеличить число координатных осей и рассмотреть получаемые в результате конфигурации. Чаще всего, получаемые решения проще удается проинтерпретировать. Однако если точки на графике не следуют какому-либо образцу, а также если график стресса не показывает какого-либо явного "изгиба" (и не похож на "край обрыва"), то данные скорее всего являются случайным "шумом".
Интерпретация осей обычно представляет собой заключительный этап анализа по методу многомерного шкалирования. Как уже упоминалось ранее, в принципе, ориентация осей в методе МНШ может быть произвольной, и систему координат можно повернуть в любом направлении. Поэтому на первом шаге получают диаграмму рассеяния точек, соответствующих объектам, на различных плоскостях.
Трехмерные решения также
можно проинтерпретировать
Однако эта интерпретация является несколько более сложной.
Заметим, что в дополнение к существенным осям координат, также следует искать кластеры точек, а также те или иные конфигурации точек (окружности, многообразия и др.). Более подробное обсуждение интерпретации полученных конфигураций, см. в работах Borg and Lingoes (1987), Borg and Shye (в печати) или Gutman, (1968).
Использование методов множественной регрессии. Аналитическим способом интерпретации осей координат (описанным в работе Kruskal и Wish, 1978) является применение методов множественной регрессии для регрессирования некоторых имеющих смысл переменных на оси координат. Это легко сделать с помощью модуля Множественная регрессия.
"Красота" метода
МНШ в том, что вы можете
анализировать произвольный
В общем случае, методы МНШ позволяют исследователю задать клиентам в анкете относительно ненавязчивые вопросы ("насколько похож товар фирмы A на товар фирмы B") и найти латентные переменные для этих анкет незаметно для респондентов.