Автор работы: Пользователь скрыл имя, 18 Декабря 2014 в 19:54, реферат
Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности
ВВЕДЕНИЕ………………………………………………………………………..3
1. Что такое Data Mining 4
2. Классификация задач Data Mining 6
2.1. Задача клаччификации и регрессии 8
2.2. Задача поиска ассоциативных правил 12
2.3. Задача кластеризации 14
3. Возможности Data Miner в Statistica 8 16
3.1. Средства анализа Statistica Data Miner 19
ЗАКЛЮЧНИЕ
СПИСОК ЛИТЕРАТУРЫ
· General Classifier - Классификация. STATISTICA Data Miner включает в себя полный пакет процедур классификации: обобщенные линейные модели, деревья классификации, регрессионные деревья, кластерный анализ и т.д.
· General Modeler/Multivariate Explorer - Обобщенные линейные, нелинейные и регрессионные модели. Данный элемент содержит линейные, нелинейные, обобщенные регрессионные модели и элементы анализа деревьев классификации.
· General Forecaster - Прогнозирование. Включает в себя модели АРПСС, сезонные модели АРПСС, экспоненциальное сглаживание, спектральный анализ Фурье, сезонная декомпозиция, прогнозирование при помощи нейронных сетей и т.д.
· General Neural Networks Explorer - Нейросетевой анализ. В данной части содержится наиболее полный пакет процедур нейросетевого анализа.
Приведенные выше элементы являются комбинацией модулей других продуктов StatSoft, кроме них STATISTICA Data Miner содержит набор специализированных процедур Data Mining, которые дополняют линейку инструментов Data Mining
· Feature Selection and Variable Filtering (for very large data sets) - Специальная выборка и фильтрация данных (для больших объемов данных). Данный модуль автоматически выбирает подмножества переменных из заданного файла данных для последующего анализа. Например, модуль может обработать около миллиона входных переменных с целью определения предикторов для регрессии или классификации.
· Association Rules - Правила ассоциации. Модуль является реализацией так называемого априорного алгоритма обнаружения правил ассоциации например, результат работы этого алгоритма мог бы быть следующим: клиент после покупки продукт "А", в 95 случаях из 100, в течении следующих двух недель после этого заказывает продукт "B" или "С".
· Interactive Drill-Down Explorer - Интерактивный углубленный анализ. Представляет собой набор средств для гибкого исследования больших наборов данных. На первом шаге вы задаете набор переменных для углубленного анализа данных, на каждом последующем шаге вы выбираете необходимую подгруппу данных для последующего анализа.
· Generalized EM & k-Means Cluster Analysis - Обобщенный метод максимума среднего и кластеризация методом К средних. Данный модуль - это расширение методов кластерного анализа, предназначен для обработки больших наборов данных и позволяет кластеризовывать как непрерывные так и категориальные переменные, обеспечивает все необходимые функциональные возможности для распознавания образов.
· Generalized Additive Models (GAM) - Обобщенные аддитивная модели (GAM). Набор методов, разработанных и популяризованных Hastie и Tibshirani (1990); более детальное рассмотрение этих методов вы также может найти в работах Schimek (2000).
· General Classification and Regression Trees (GTrees) - Обобщенные классификационные и регрессионные деревья (GTrees). Модуль является полной реализацией методов разработанных Breiman, Friedman, Olshen, и Stone (1984). Кроме этого модуль содержит разного рода доработки и дополнения такие как, оптимизации алгоритмов для больших объемов данных и т.д. Модуль является набором методов обобщенной классификации и регрессионных деревьев.
· General CHAID (Chi-square Automatic Interaction Detection) Models - Обобщенные CHAID модели (Хи-квадрат автоматическое обнаружение взаимодействия). Подобно предыдущему элементу данный модуль является оптимизацией данной математической модели для больших объемов данных.
data miner statistica регрессия кластеризация
· Interactive Classification and Regression Trees - Интерактивная классификация и регрессионные деревья. В дополнение к модулям автоматического построения разного рода деревьев, STATISTICA Data Miner также включает средства для формирования таких деревьев в интерактивном режиме.
· Boosted Trees - Расширяемые простые деревья. Последние исследование аналитических алгоритмов показывают, что для некоторых задач построения "сложных" оценок, прогнозов и классификаций, использование последовательно увеличиваемых простых деревьев дает более точные результаты чем нейронные сети или сложные цельные деревья. Данный модуль реализует алгоритм построения простых увеличиваемых (расширяемых) деревьев.
· Multivariate Adaptive Regression Splines (Mar Splines) - Многомерные адаптивные регрессионные сплайны (Mar Splines). Данный модуль основан на реализации методики предложенной Friedman (1991; Multivariate Adaptive Regression Splines, Annals of Statistics, 19, 1-141); в STATISTICA Data Miner расширены опции MARSPLINES для того, чтобы приспособить задачи регрессии и классификации к непрерывными и категориальным предикторам.
· Goodness of Fit Computations - Критерии согласия. Данный модуль производит вычисления различных статистических критериев согласия как для непрерывных переменных, так и для категориальных.
· Rapid Deployment of Predictive Models - Быстрые прогнозирующие модели (для большого числа наблюдаемых значений). Модуль позволяет строить за короткое время классификационные и прогнозирующие модели для большого объема данных. Полученные результаты могут быть непосредственно сохранены во внешней базе данных.
ЗАКЛЮЧЕНИЕ
Интеллектуальный анализ данных является одним из наиболее актуальных и востребованных направлений прикладной математики. Современные процессы бизнеса и производства порождают огромные массивы данных, и людям становится все труднее интерпретировать и реагировать на большое количество данных, которые динамически изменяются во времени выполнения. Нужно извлекать максимум полезных знаний из многомерных, разнородных, неполных, неточных, противоречивых, косвенных данных. А главное, сделать это эффективно, если объем данных измеряется гигабайтами или даже терабайтами.
Важно предохранить людей от информационной перегрузки, преобразовать оперативные данные в полезную информацию так, чтобы нужные действия могли быть приняты в нужное время.
СПИСОК ЛИТЕРАТУРЫ