Автор работы: Пользователь скрыл имя, 06 Декабря 2010 в 18:50, Не определен
ВВЕДЕНИЕ
1. ТЕОРИЯ ИГР
2. ТЕОРИЯ МАТРИЧНЫХ ИГР
3. АНТАГОНИСТИЧЕСКИЕ ИГРЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
ТЕМА:
«МАТРИЧНЫЕ ИГРЫ»
СОДЕРЖАНИЕ
ВВЕДЕНИЕ…………………………………………………………
ЗАКЛЮЧЕНИЕ……………………………………………………
СПИСОК ИСПОЛЬЗОВАННОЙ
ЛИТЕРАТУРЫ……………………………………………10
ВВЕДЕНИЕ
Математическая теория игр является составной частью исследования операций. Она применяется в различных областях человеческой деятельности, таких как экономика и менеджмент, промышленность и сельское хозяйство, военное дело и строительство, торговля и транспорт, связь и т.д.
Зачастую человек осуществляя какую-либо деятельность, сталкивается с проблемой принятия решения в условиях множества факторов, влияющих на само решение. Эффективней всего в подобных случаях пользоваться матричными играми, которые помогают упростить сложившуюся ситуацию и полностью оценить важность каждого фактора.
Принятие
решения в условиях неопределенности
– это одна из задач теории оптимальных
решений. Для решения подобных вопросов
разработаны специальные математические
методы, которые рассматриваются в теории
игр.
1.
ТЕОРИЯ ИГР
Теория игр впервые была систематически изложена Дж. фон Нейманом и О. Моргенштерном в 1994 г., хотя отдельные исследования в этой области публиковались ещё в 1920 годах. Нейман и Моргенштерн написали книгу, которая содержала в основном экономические примеры, т.к. описать конфликт легче в числовой форме. После второй мировой войны всерьез теорией игр заинтересовались военные, т.к. увидели в ней аппарат для исследования стратегических решений. Затем внимание снова переключилось на экономические проблемы. Сейчас ведется большая работа, направленная на расширение сферы применения теории игр.
Теория игр – это теория математических моделей, интересы участников которых различны, причем они достигают своей цели различными путями. Столкновение противоположных интересов участников приводит к возникновению конфликтных ситуаций. Необходимость анализировать такие ситуации была причиной возникновения теории игр, задачей которой является выработка рекомендаций к рациональным действиям участников конфликта.
Чтобы исключить трудности, возникающие при анализе конфликтных ситуаций и в результате наличия многих факторов, строится упрощенная модель ситуации. Такая модель называется игрой. Конфликтная ситуация в игровой модели развивается по определенным правилам. Примерами таких игр являются хорошо известные нам шахматы, шашки и карточные игры.
Различают три виды причин неопределенности результата игры:
2.
ТЕОРИЯ МАТРИЧНЫХ ИГР
Теория матричных игр позволяет нам рассматривать и с легкостью решать задачи принятия решений в ситуациях с несколькими участниками, когда значение целевой функции для каждого зависит также и от решений, принимаемых остальными участниками. Поэтому важная роль в матричных играх отводится конфликтам и совместным действиям.
Характерная
черта всякого общественного, социально-экономического
явлений состоит
Конфликт может возникнуть из-за различия целей, которые отражают не только несовпадающие интересы, но и многосторонние интересы одного и того же лица. Например, разработчик экономической политики обычно преследует множество целей, согласуя противоречивые требования, такие как рост объемов производства, повышение доходов. Так же конфликт может проявиться не только в результате сознательных действий участников, но и как результат действий тех или иных стихийных сил (ярким примером данного вида являются «игры с природой»). Данные случаи конфликтом могут встретиться как в социологии, так и в психологии, биологии, политологии, военном деле. Самыми простыми примерами матричных игр являются карточные и спортивные игры.
Каждая модель социально-экономического явления должна отражать черты конфликта, т.е. описывать:
В
теории матричных игр предполагается,
что функция выигрыша и множества
стратегий, доступна и известна каждому
из игроков, т.е. каждый игрок знает свою
функцию выигрыша и набор имеющихся
в его распоряжении стратегий, а также
функций выигрыша и стратегий все остальных
игроков, и в соответствии с этой информацией
организует свое поведение.
Классификация
игр
Различные виды игр можно классифицировать по числу игроков, числу стратегий, свойствам функции выигрыша, возможности предварительных переговоров и взаимодействия между игроками в ходе игры.
В зависимости от числа игроков различают игры с двумя, тремя и более участниками. В теории оптимизации представлены игры как с одним игроком, так и с бесконечным числом игроков.
Согласно другому принципу классификации – по количеству стратегий – различают конечные и бесконечные игры. В конечных играх игроки располагают конечным числом возможных стратегий. Сами стратегии в конечных играх нередко называются чистыми стратегиями. Соответственно, в бесконечных играх игроки имеют бесконечное число возможных стратегий. Так в примере с продавцом и покупателем каждый из игроков может назвать любую устраивающую его цену и количество продаваемого (покупаемого) товара.
Третий способ классификации – по свойствам функций выигрыша (платежных функций). Особым случаем в теории игр является ситуация, когда выигрыш одного из игроков равен проигрышу другого (т.е. прямой конфликт между игроками). Подобные игры называют играми с нулевой суммой или антагонистическими играми. Примерами данных игр являются игры в орлянку. Прямой противоположностью играм такого типа являются игры с постоянной разностью, в которых игроки и выигрывают, и проигрывают одновременно. Между этими крайними имеются множество игр с ненулевой суммой, где имеются и конфликты, и согласованные действия игроков.
В
зависимости от возможности предварительных
переговоров между игроками различают
кооперативные и
3.
АНТАГОНИСТИЧЕСКИЕ
ИГРЫ
Антагонистические игры являются разновидностью матричных игр, в которых выигрыш одного игрока равен проигрышу другого. Их ещё называют играми с нулевой суммой.
Наиболее часто приводимым примером игр с ненулевой суммой является игра «Дилемма заключенного». Суть игры состоит в том, что два преступника ожидают приговора суда за содеянное. Адвокат конфиденциально предлагает каждому из преступников облегчить его участь, если он сознается и даст показания против сообщника, которому грозит угодить в тюрьму за совершенное преступление на 10 лет. Если никто не сознается, то обоим угрожает заключение на определенный срок (например, 1 год) по обвинению в незначительном преступлении. Если сознаются оба то преступника, то, с учетом чистосердечного признания, им обоим грозит попасть в тюрьму на 5 лет. Каждый заключенный имеет на выбор 2 стратегии: не сознаться или сознаться, выдав при этом сообщника.
Обобщим выше сказанное: 1 игрок – сознаться или не сознаться и 2 игрок – сознаться или не сознаться. В итоге можно получить следующую матрицу «выигрышей» для обоих игроков:
.
Решение
антагонистических
игр
Основным допущением при решении данных игр является то, что каждый игрок стремится обеспечить себе максимально возможный выигрыш при любых действиях партнера.
В игре могут участвовать как два игрока (её называют парной), так и множество. Но наибольшее практическое значение имеют парные игры, в которых участников обозначают за A и B. Простейшим видом стратегической игры – игра двух лиц с нулевой суммой (т.е. сумма выигрышей сторон равна нулю).
Игра состоит из двух ходов: игрок A выбирает одну из своих возможных стратегий ( i = 1, 2, …, m), а игрок B выбирает стратегию ( j = 1, 2, .., n), причем каждый участник делает выбор в полной ситуации незнании выбора другого игрока. В результате выигрыши и каждого из игроков удовлетворяют соотношению
, откуда если , имеем .
Цель игрока – максимизировать функцию , а игрока В – минимизировать эту же функцию. Каждый из игроков может выбирать одну из переменных, от которых зависит значение функции. Если игрок А выбирает некоторую из стратегий , то это может влиять на значение функции . Влияние на величину значения является неопределенным, а определенность имеет место только после выбора, например, игроком B переменной (при этом определяется другим игроком).
Пусть , тогда составим матрицу:
.
Строки
матрицы соответствуют
Пусть игрок А выбрал некоторую стратегию , тогда в худшем случае он получит выигрыш, равный . Поэтому предвидя такую возможность, игрок А должен выбрать ту стратегию, которая позволит максимизировать его минимальный выигрыш : . Величина - гарантированный выигрыш игрока А – называется нижней ценой игры, а стратегия , обеспечивающая получение - максиминной.
Игрок В, выбирая стратегию, исходит из следующего принципа: при выборе некоторой стратегии его проигрышнее превысит максимального из значений элементов -го столбца матрицы, т.е. меньше или равен . Рассматривая множество для различных значений , игрок В выбирает такое значение , при котором его максимальный проигрыш минимизируется: . Величина называется верхней ценой игры, а соответствующая выигрышу стратегия - минимаксной.