Материалы модуля «Алгоритмы ЧМВ»

Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 00:56, курсовая работа

Описание работы

Проективной мы будем называть человеко-машинную систему, в которой для взаимодействия с машиной человек составляет на языке инструментальной области проект, описывающий ее предполагаемое поведение. Типичная проективная система создается, например, на основе утилиты make. Для make объектами прикладной области являются файлы, а проектом - специальный файл по имени Makefile. В нем перечислены исходные объекты, целевые объекты (те, что нужны в результате), и правила изготовления целевых объектов из исходных: некоторые файлы получаются из других в результате компиляции или перекодировки, некоторые представляют собой архивы, некоторые могут просто копироваться, и т. д.

Файлы: 1 файл

Модуль Алгоритмы ЧМВ.doc

— 200.50 Кб (Скачать файл)

Свойство  операционной среды разделять ресурсы предусматривает ситуацию, когда некий субъект системы не может иметь доступ к определенному ее объекту. Основания для отказа в доступе могут быть разными. Например, двум пользователям нельзя одновременно записывать данные в один и тот же файл. Но еще чаще бывает, что пользователь вообще не имеет права записывать данные в этот файл - неважно, по распоряжению начальства или по соображениям системной безопасности. Сотрудник фирмы, которому не разрешено читать личные дела других сотрудников, не должен иметь доступа к ним и в электронном виде. Ограничения доступа субъектов (пользователей) к объектам (информации) должны строго соответствовать положению дел за пределами системы.

Свод  правил, управляющих разграничением доступа, называется политикой безопасности системы. Идеальная политика безопасности должна быть полной, непротиворечивой и рассматривать все возможности доступа субъектов системы к ее объектам. Только соблюдение всех трех принципов гарантирует, что нарушить установленные правила (например, получить несанкционированный доступ к объекту) системными средствами невозможно. Если же предполагаемый злоумышленник воспользовался каким-нибудь внесистемным средством и смог получить статус номинального субъекта, к которому он не имеет отношения (например, подглядел чужой пароль и работает под чужим именем), никаких гарантий быть не может.

Полнота политики безопасности означает, что в ней должны быть отражены все существующие ограничения доступа. Непротиворечивость заключается в том, что решение об отказе или предоставлении доступа конкретного субъекта к конкретному объекту не должно зависеть от того, какими путями система к нему приходит. Третье требование, называемое также отсутствием недокументированных возможностей, должно гарантировать нам, что доступ не может быть осуществлен иначе как описанным в политике безопасности способом.

Из этого  третьего требования сразу же следует, что в политике безопасности необходимо учитывать также и случаи косвенного доступа, например когда пользователю не разрешено открывать файл, но разрешено запускать программу, которая имеет право открывать этот файл. К тому же выясняется, что любая ошибка в реализации правил доступа (например, при написании программ) тоже может отразиться на безопасности системы.

Вертикальные  информационные потоки

Если  данные в системе неравнозначны (например, есть секретная и несекретная  информация или информация более  и менее достоверная), придется определить еще и правила, помогающие соблюдать  секретность и достоверность, т. е. отрабатывать политику безопасности. Как показано в [31], к самому понятию безопасности можно подходить по-разному. Остановимся на двух популярных моделях безопасности: так называемые "модели секретности" и "модели надежности". Эти две модели - часть практического результата теории информационных потоков, описывающего вертикальные информационные потоки.

Согласно  общему предположению, данные в системе  считаются неравнозначными: некоторая информация имеет высокую значимость, некоторая - низкую, возможно введение нескольких уровней значимости. Потоком информации при этом считается перемещение данных с уровня на уровень (понижение и повышение значимости), а политика безопасности регулирует такие потоки с целью сохранить некоторое основное свойство информации.

Модель  секретности

В модели секретности таким свойством считается конфиденциальность информации. Модель повторяет общепринятое отношение к секретам: каждому объекту системы присваивается определенный уровень секретности, и чем выше уровень, тем меньше субъектов системы имеют к этому объекту доступ.

Обычно  предполагается, что доступ организован строго иерархически: субъект имеет доступ к данным определенного уровня секретности и ниже. Для этого каждому субъекту присваивается единственный уровень доступа (для простоты будем заменять словосочетания "уровень секретности объекта" и "уровень доступа субъекта" на "уровень объекта" и "уровень субъекта"). Получившаяся схема напоминает пирамиду, откуда пользователь может "увидеть" только нижнюю ее часть, а все, что выше его уровня, становится "невидимым". Такое понимание секретности даже формально не может гарантировать неразглашение конфиденциальной информации.

В модели рассматривается два метода доступа к данным: чтение и запись. Если субъект перемещает некоторый объект системы на свой уровень - это операция чтения. Доступ по чтению не требует изменения уровня объекта, но предполагает, что в результате операции данные одного уровня будут доступны на другом. Принято считать, что конфиденциальность информации сохранится, если запретить доступ к данным более высокого уровня. Для чтения это верно.

Если  субъект перемещает некоторый объект системы своего уровня на какой-нибудь другой - это операция записи. В результате операции записи может не произойти передачи данных, однако изменение уровня объекта (в обычном понимании - засекречивание или рассекречивание) позволит субъектам других уровней в дальнейшем иметь доступ к нему по чтению. Поскольку рассекречивание объекта нарушает конфиденциальность информации, эту операцию надо запретить, что означает запрет записывать данные на более низкий уровень секретности. Этот запрет (как и предыдущий) должен быть реализован на системном уровне, чтобы исключить саму возможность разглашения данных одними только системными средствами (без помощи взяток, шпионажа, шантажа и прочих внесистемных воздействий на субъекта).

Таким образом, правила нечтения верхнего уровня (No Read Up, NoRU) и незаписи на нижний уровень (No Write Down, NoWD) в модели секретности запрещают нисходящие информационные потоки. Заметим, что запись на верхний уровень (WU) правилами не запрещена: любой нижестоящий субъект вправе информировать вышестоящие инстанции о том, что происходит на его уровне (см. рис. 9.1).

 
Рис. 9.1. Вертикальные информационные потоки: модель секретности

Главный недостаток полностью реализованной  модели секретности заключается в том, что вся информация - если она вообще куда-то движется - будет в конце концов засекречена. Некоторые субъекты совсем ничего не будут знать, прочие же станут "невыездными" и будут под страхом неминуемого наказания угрюмо молчать на вечеринках или в одиночку пить горькую по домам. Если такое положение дел не устраивает, есть три способа его преодоления.

Во-первых, можно ввести наивысший уровень секретности (с номером, допустим, -1), попадая на который объекты становятся недоступны ни одному субъекту системы. С ролью наивысшего уровня секретности хорошо справляются спецслужбы или машина для уничтожения бумаг. Если при этом в системе имеется приток объектов невысокого уровня секретности, можно добиться баланса.

Во-вторых, можно ввести автоматическую процедуру  рассекречивания, основанную на свойствах  объекта: его актуальности, времени  жизни, связях с другими объектами и т. п. Говорят, что британские спецслужбы понижают секретность документов, если к ним не было обращений последние 50 лет.

В-третьих, в системе можно предусмотреть  доверенного субъекта - выделенного субъекта системы, которому разрешено нарушать политику безопасности. Он-то и будет рассекречивать некоторые документы, руководствуясь не системными, а личными правилами. Доверенных субъектов может быть несколько, каждый с правом нарушать только некоторые правила политики безопасности, они могут образовывать собственную иерархию и подчиняться собственной политике безопасности. Здесь возникает извечный вопрос: "Кто проверяет того, кто проверяет?", на который мы отвечать не беремся.

Модель  надежности

Другой  подход к пониманию безопасности описывает модель надежности. В этом подходе значимость объекта понимается как степень доверия к нему: например, может оцениваться качество содержащейся в нем информации, ее актуальность, достоверность и т. п. Надежность объекта сама собой повышаться не может, а может только падать: со временем информация теряет актуальность, да и степень доверия к ней не может быть выше степени доверия к ее источнику. Можно предположить, что эта модель будет зеркальна модели секретности, в которой значимость объекта, наоборот, никогда не понижается.

Как и  в случае модели секретности к очевидному правилу, запрещающему запись на верхний уровень (субъект не в состоянии подтвердить, что его объект надежнее его самого), добавляется чуть менее очевидное, запрещающее чтение нижнего уровня (с какой это стати мы будем доверять объекту больше, чем какому бы то ни было породившему его субъекту?). Стало быть, налицо запрет на восходящие информационные потоки, который выражается в правилах NoWU и NoRD (см. рис. 9.2).

 
Рис. 9.2. Вертикальные информационные потоки: модель надежности

Естественно, в модели надежности возникает все та же ситуация "стекания" объектов на один уровень - на этот раз на самый нижний. Действительно, если нет повода повысить уровень доверия к объекту, а повод понизить этот уровень нет-нет да и появляется, то в конце концов все объекты вместо доверия начнут внушать одни подозрения.

Преодолеть  вырождение уровней можно все  теми же способами. Во-первых, можно  организовать внесистемный приток и  отток информации (т. е. пополнять  систему новыми объектами достаточно высокого уровня и уничтожать потерявшие актуальность объекты при выбывании с нижнего уровня). Во-вторых, придумать алгоритм автоматического повышения уровня объекта (например, вести статистику успешного использования или что-нибудь подобное). В-третьих, привлечь эксперта (доверенного субъекта), который, исходя из внесистемных критериев, будет регулярно повышать уровень разных объектов системы (нарушая тем самым правило NoWU).

Рискнем предположить, что система, полностью обеспечивающая оба требования к информации (надежность и секретность), невозможна. Свод правил, учитывающий положение субъектов и объектов сразу в двух иерархиях, наверняка будет чрезвычайно сложным. Непонятно до конца, как обрабатывать ситуации вроде той, когда с точки зрения секретности один сотрудник имеет право передавать некий документ другому, а с точки зрения надежности - нет. Любой компромисс между двумя требованиями приведет к нарушению какого-нибудь из них. Поэтому запрет обычно считается важнее разрешения, но тогда ограничение допустимых в каждой модели потоков сильно снижает гибкость системы. Видимо, надежности и секретности одновременно можно достигнуть только несистемными средствами. Даже система, последовательно реализующая одну политику безопасности, для продолжительной работы требует некоторых внесистемных средств балансировки уровней.

Горизонтальные информационные потоки

Предположим теперь, что объекты в системе  невозможно распределить по уровням  значимости. Это бывает довольно часто, если значимость данных определяется не самой системой, а конкретным человеком, который с ними работает. Тогда для одного субъекта системы некоторый объект будет значим, а для другого - нет. Более того, иногда единственным поводом открыть или запретить кому-то доступ к объекту становится мнение некоторого субъекта системы.

Операции  чтения и записи определяются в этом случае по отношению к каждому отдельному объекту (классу объектов). Чтение - это копирование данных из объекта в некоторое личное информационное пространство субъекта (пользователь запоминает содержимое файла). Запись - это копирование данных из личного информационного пространства субъекта в объект (пользователь изменяет содержимое файла). Если множество объектов, которые субъекту разрешено читать, не совпадают с множеством объектов, доступных ему для записи, а некоторые из записываемых объектов разрешено читать другому субъекту, возникает очевидный горизонтальный информационный поток. Точнее было бы назвать его безуровневым, однако слово "горизонтальный" здесь подчеркивает равную с точки зрения системы значимость и объектов, и субъектов.

Для выявления всех возможных информационных потоков в системе составляется диаграмма достижимости. Диаграмма достижимости состоит из вершин двух видов: субъектов и объектов, соединенных стрелками: от объекта к субъекту - возможные операции чтения, от субъекта к объекту - записи. Достижимость (возможность пройти по диаграмме, следуя стрелкам) одной вершины-субъекта с другой вершины-субъекта означает потенциальную возможность передачи данных от одного к другому, хотя бы и не напрямую. Достижимость вершины-объекта с другой вершины-объекта как раз и отражает информационный поток от одного объекта (класса объектов) к другому (см. рис. 9.3).

 
Рис. 9.3. Горизонтальные информационные потоки: диаграмма достижимости

На приведенном  примере прямая передача информации из объекта "о1" в объект "о3" невозможна, однако существует информационный поток "о1--с1--о2--с3--о3", организуемый субъектами "с1" и "с3". Невозможна и прямая передача данных от субъекта "с3" субъекту "с1", однако через "третьи руки" это можно сделать: "с3--о3--с2--о1--с1". Алгоритмы выявления достижимости достаточно просты, однако они не дают рекомендации по тому, как изменить существующую модель, чтобы избежать нежелательных информационных потоков.

Информация о работе Материалы модуля «Алгоритмы ЧМВ»