Классификация информационно-поисковых систем. Основные методы поиска в ИПС

Автор работы: Пользователь скрыл имя, 28 Ноября 2011 в 21:24, реферат

Описание работы

Пользователям Internet уже хорошо известны названия таких сервисов и информационных служб, как Lycos, AltaVista, Yahoo, OpenText, InfoSeek, а без услуг этих систем сегодня практически нельзя найти что-либо полезное в море информационных ресурсов Сети. Но что собой представляют эти сервисы изнутри, как они устроены, почему результат поиска в терабайтных массивах информации осуществляется достаточно быстро и как устроено ранжирование документов при выдаче - все это обычно остается за кадром.

Файлы: 1 файл

Документ Microsoft Office Word.docx

— 40.70 Кб (Скачать файл)

Департамент образования вологодской  области

БОУ СПО Вологодский  Строительный Колледж 
 
 
 
 

Предмет:«Информатика»

Специальность : МиЭВСТУиВ

Группа : 279 
 
 
 

Классификация информационно-поисковых  систем. Основные методы поиска в ИПС 
 
 
 
 
 
 
 
 

Студент  : Долинская Е.О.

Преподаватель : Габриэлян Т.А. 
 
 
 
 

Вологда 2011

Пользователям Internet уже хорошо известны названия таких сервисов и информационных служб, как Lycos, AltaVista, Yahoo, OpenText, InfoSeek, а без услуг этих систем сегодня практически нельзя найти что-либо полезное в море информационных ресурсов Сети. Но что собой представляют эти сервисы изнутри, как они устроены, почему результат поиска в терабайтных массивах информации осуществляется достаточно быстро и как устроено ранжирование документов при выдаче - все это обычно остается за кадром. Тем не менее без правильного планирования стратегии поиска, знакомства с основными положениями теории ИПС (Информационно-Поисковых Систем), насчитывающей уже двадцатилетнюю историю, трудно эффективно использовать даже такие скорострельные сервисы, как AltaVista или Lycos. 

Информационно-поисковые  системы появились на свет достаточно давно. Теории и практике построения таких систем посвящено множество  статей, основная масса которых приходится на конец 70-х - начало 80-х годов. Среди отечественных источников следует выделить научно-технический сборник "Научно-техническая информация. Серия 2", который выходит до сих пор. На русском языке издана так же и "библия" по разработке ИПС - "Динамические библиотечно-информационные системы" Ж. Солтона, в которой рассмотрены основные принципы построения информационно-поисковых систем и моделирования процессов их функционирования. Таким образом, нельзя сказать, что с появлением Internet и бурным вхождением его в практику информационного обеспечения появилось нечто принципиально новое, чего не было раньше. Если быть точным, то ИПС в Internet - это признание того, что ни иерархическая модель Gopher, ни гипертекстовая модель World Wide Web еще не решают проблему поиска информации в больших объемах разнородных документов. И на сегодняшний день нет другого способа быстрого поиска данных, кроме поиска по ключевым словам.

При использовании иерархической модели Gopher приходится довольно долго бродить по дереву каталогов, пока не встретишь нужную информацию. Эти каталоги должны кем-то поддерживаться, и при этом их тематическое разбиение должно совпадать с информационными потребностями пользователя. Учитывая анархичность Internet и огромное количество всевозможных интересов у пользователей Сети, понятно, что кому-то может и не повезти и в сети не будет каталога, отражающего конкретную предметную область. Именно по этой причине для множества серверов Gopher, называемого GopherSpace была разработана информационно-поисковая программа Veronica (Very Easy Rodent-Oriented Net-wide Index of Computerized Archives).

Аналогичное развитие событий наблюдается и в World Wide Web. Собственно еще в 1988 году в специальном выпуске журнала "Communication of the ACM" среди прочих проблем разработки гипертекстовых систем и их использования Франк Халаз назвал в качестве первоочередной задачи для следующего поколения систем этого типа назвал проблему организации поиска информации в больших гипертекстовых сетях. До сих пор многие идеи, высказанные в той статье, не нашли еще своей реализации. Естественно, что система, предложенная Бернерсом-Ли и получившая такое широкое распространение в Internet, должна была столкнуться с теми же проблемами, что и ее локальные предшественники. Реальное подтверждение этому было продемонстрировано на второй конференции по World Wide Web осенью 1994 года, на которой были представлены доклады о разработке информационно-поисковых систем для Web, а система World Wide Web Worm, разработанная Оливером МакБрайном из Университета Колорадо, получила приз как лучшее навигационное средство. Следует также отметить, что все-таки долгая жизнь суждена отнюдь не чудесным программам талантливых одиночек, а средствам, являющимся результатом планового и последовательного движения научных и производственных коллективов к поставленной цели. Рано или поздно этап исследований заканчивается, и наступает этап эксплуатации систем, а это уже совсем другой род деятельности. Именно такая судьба ожидала два других проекта, представленных на той же конференции: Lycos, поддерживаемый компанией Microsoft, и WebCrawler, ставший собственностью America On-line.

Разработка новых  информационных систем для Web не завершена. Причем как на стадии написания коммерческих систем, так и на стадии исследований. За прошедшие два года снят только верхний слой возможных решений. Однако многие проблемы, которые ставит перед разработчиками ИПС Internet, не решены до сих пор. Именно этим обстоятельством и вызвано появление проектов типа AltaVista компании Digital, главной целью которого является разработка программных средств информационного поиска для Web и подбор архитектуры для информационного сервера Web. 
 
 
 
 
 
 
 
 
 
 

Архитектура современных ИПС для WWW 

Прежде чем  описать проблемы построения информационно-поисковых  систем Web и пути их решения рассмотрим типовую схему такой системы. В различных публикациях, посвященных конкретным системам, например, приводятся схемы, которые отличаются друг от друга только способом применения конкретных программных решений, а не принципом организации различных компонентов системы. Поэтому рассмотрим эту схему на примере, взятом из работы .

 

. 
 
 
 
 
 
 

Типовая схема информационно-поисковой системы 

Client (клиент) на этой схеме - это программа просмотра конкретного информационного ресурса. Наиболее популярны сегодня мультипротокольные программы типа Netscape Navigator. Такая программа обеспечивает просмотр документов WWW, Gopher, Wais, FTP-архивов, почтовых списков рассылки и групп новостей Usenet. В свою очередь все эти информационные ресурсы являются объектом поиска информационно-поисковой системы.

User interface (пользовательский интерфейс) - это не просто программа просмотра, в случае информационно-поисковой системы под этим словосочетанием понимают также способ общения пользователя с поисковым аппаратом: системой формирования запросов и просмотров результатов поиска.

Search engine (поисковая машина) - служит для трансляции запроса на информационно-поисковом языке (ИПЯ), в формальный запрос системы, поиска ссылок на информационные ресурсы Сети и выдачи результатов этого поиска пользователю.

Index database (индекс базы данных) - индекс, который является основным массивом данных ИПС и служит для поиска адреса информационного ресурса. Архитектура индекса устроена таким образом, чтобы поиск происходил максимально быстро и при этом можно было бы оценить ценность каждого из найденных информационных ресурсов сети.

Queries (запросы пользователя) - сохраняются в его (пользователя) личной базе данных. На отладку каждого запроса уходит достаточно много времени, и поэтому чрезвычайно важно запоминать запросы, на которые система дает хорошие ответы.

Index robot (робот-индексировщик) - служит для сканирования Internet и поддержания базы данных индекса в актуальном состоянии. Эта программа является основным источником информации о состоянии информационных ресурсов сети.

WWW sites - это весь Internet или точнее - информационные ресурсы, просмотр которых обеспечивается программами просмотра.

Рассмотрим теперь назначение и принципу построения каждого  из этих компонентов более подробно и определим, в чем отличие  данной системы от традиционной ИПС  локального типа. 

Информационные  ресурсы и их представление  в ИПС 

Как видно из рисунка, документальным массивом ИПС Internet является все множество документов шести основных типов: WWW-страницы, Gopher-файлы, документы Wais, записи архивов FTP, новости Usenet и статьи почтовых списков рассылки. Все это довольно разнородная информация, которая представлена в виде различных, никак несогласованных друг с другом форматов данных: тексты, графическая и аудиоинформация и вообще все, что имеется в указанных хранилищах. Естественно возникает вопрос - как информационно-поисковая система должна со всем этим работать?

В традиционных системах используется понятие поискового образа документа - ПОД. Обычно, этим термином обозначают нечто, заменяющее собой документ и использующееся при поиске вместо реального документа. Поисковый образ является результатом применения некоторой модели информационного массива документов к реальному массиву. Наиболее популярной моделью является векторная модель, в которой каждому документу приписывается список терминов, наиболее адекватно отражающих его смысл. Если быть более точным, то документу приписывается вектор размерности, равный числу терминов, которыми можно воспользоваться при поиске. При булевой векторной модели элемент вектора равен 1 или 0, в зависимости от наличия или отсутствия термина в ПОД. В более сложных моделях термины взвешиваются - элемент вектора равен не 1 или 0, а некоторому числу (весу), отражающему соответствие данного термина документу. Именно последняя модель стала наиболее популярной в ИПС Internet.

Вообще говоря, существуют и другие модели описания документов: вероятностная модель информационных потоков и поиска и модель поиска в нечетких множествах . Не вдаваясь в подробности, имеет смысл обратить внимание на то, что пока только линейная модель применяется в системах Lycos, WebCrawler, AltaVista, OpenText и AliWeb. Однако ведутся исследования по применению и других моделей, результаты которых отражены в работах. Таким образом, первая задача, которую должна решить ИПС, - это приписывание списка ключевых слов документу или информационному ресурсу. Именно эта процедура и называется индексированием. Часто, однако, индексированием называют составление файла инвертированного списка, в котором каждому термину индексирования ставится в соответствие список документов, в которых он встречается. Такая процедура является только частным случаем, а точнее, техническим аспектом создания поискового аппарата ИПС. Проблема, связанная с индексированием, заключается в том, что приписывание поискового образа документу или информационному ресурсу опирается на представление о словаре, из которого эти термины выбираются, как о фиксированной совокупности терминов. В традиционных системах существовало разбиение на системы с контролируемым словарем и системы со свободным словарем. Контролируемый словарь предполагал ведение некоторой лексической базы данных, добавление терминов в которую производилось администратором системы, и все новые документы могли быть заиндексированы только теми терминами, которые были в этой базе данных. Свободный словарь пополнялся автоматически по мере появления новых документов. Однако на момент актуализации словарь также фиксировался. Актуализация предполагала полную перезагрузку базы данных. В момент этого обновления перегружались сами документы, и обновлялся словарь, а после его обновления производилась переиндексация документов. Процедура актуализации занимала достаточно много времени и доступ к системе в момент ее актуализации закрывался.

Теперь представим себе возможность такой процедуры  в анархичном Internet, где ресурсы появляются и исчезают ежедневно. При создании программы Veronica для GopherSpace предполагалось, что все серверы должны быть зарегистрированы, и таким образом велся учет наличия или отсутствия ресурса. Veronica раз в месяц проверяла наличие документов Gopher и обновляла свою базу данных ПОД для документов Gopher. В World Wide Web ничего подобного нет. Для решения этой задачи используются программы сканирования сети или роботы-индексировщики. Разработка роботов - это довольно нетривиальная задача; существует опасность зацикливания робота или его попадания на виртуальные страницы. Робот просматривает сеть, находит новые ресурсы, приписывает им термины и помещает в базу данных индекса. Главный вопрос заключается в том, что за термины приписывать документам, откуда их брать, ведь ряд ресурсов вообще не является текстом. Сегодня роботы обычно используют для индексирования следующие источники для пополнения своих виртуальных словарей: гипертекстовые ссылки, заголовки, заглавия (H1,H2), аннотации, списки ключевых слов, полные тексты документов, а также сообщения администраторов о своих Web-страницах. Для индексирования telnet, gopher, ftp, нетекстовой информации используются главным образом URL, для новостей Usenet и почтовых списков поля Subject и Keywords. Наибольший простор для построения ПОД дают HTML документы. Однако не следует думать, что все термины из перечисленных элементов документов попадают в их поисковые образы. Очень активно применяются списки запрещенных слов (stop-words), которые не могут быть употреблены для индексирования, общих слов (предлоги, союзы и т.п.). Таким образом даже то, что в OpenText, например, называется полнотекстовым индексированием реально является выбором слов из текста документа и сравнением с набором различных словарей, после которого термин попадает в ПОД, а потом и в индекс системы. Для того чтобы не раздувать словарей и индексов (индекс системы Lycos уже сегодня равен 4 Тбайт), применяется такое понятие, как вес термина. Документ обычно индексируется через 40 - 100 наиболее "тяжелых" терминов. 

Индекс  поиска

После того как  ресурсы заиндексированы и система составила массив ПОД, начинается построение поискового аппарата. Совершенно очевидно, что лобовой просмотр файла или файлов ПОД займет много времени, что абсолютно не приемлемо для интерактивной системы WWW. Для ускорения поиска строится индекс, которым в большинстве систем является набор связанных между собой файлов, ориентированных на быстрый поиск данных по запросу. Структура и состав индексов различных систем могут отличаться друг от друга и зависят от многих факторов: размер массива поисковых образов, информационно-поисковый язык, размещения различных компонентов системы и т.п. Рассмотрим структуру индекса на примере системы, для которой можно реализовывать не только примитивный булевый, но и контекстный и взвешенный поиск, а также ряд других возможностей, отсутствующие во многих поисковых системах Internet, например Yahoo. Индекс рассматриваемой системы состоит из таблицы идентификаторов страниц (page-ID), таблицы ключевых слов (Keyword-ID), таблицы модификации страниц, таблицы заголовков, таблицы гипертекстовых связей, инвертированного (IL) и прямого списка (FL).

Информация о работе Классификация информационно-поисковых систем. Основные методы поиска в ИПС