Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 04:15, курсовая работа
Впервые слово «кэш» в компьютерном контексте было использовано в 1967 году во время подготовки статьи для публикации в журнале «IBM Systems Journal». Статья касалась усовершенствования памяти в разрабатываемой модели 85 из серии IBM System/360. Редактор журнала Лайл Джонсон попросил придумать более описательный термин, нежели «высокоскоростной буфер», но из-за отсутствия идей сам предложил слово «кэш». Статья была опубликована в начале 1968 года, авторы были премированы IBM, их работа получила распространение и впоследствии была улучшена, а слово «кэш» вскоре стало использоваться в компьютерной литературе как бщепринятый термин.
Введение……………………………………………………………………………………….1
Описание устройства. Принципы кэширования………………………………………...5
Основные режимы работы…………………………………………………………………9
Алгоритм и принцип действия…………………………………………………………...13
Недостатки работы устройства при кэшировании……………………………………15
Предложения по повышению эффективности доступа к данным…………………..16
Список используемой литературы………………………………………………………20
В зависимости от способа определения взаимного соответствия строки кэша и области основной памяти различают три архитектуры кэш-памяти: кэш прямого отображения (direct-mapped cache), полностью ассоциативный кэш (fully associative cache) и их комбинация — частично- или наборно-ассоциативный кэш (set-associative cache).
2. Основные режимы работы.
2.1 Кэш прямого отображения.
Рис. 2. Кэш прямого отображения.
В кэш-памяти прямого отображения адрес памяти, по которому происходит обращение, однозначно определяет строку кэша, в которой может находиться требуемый блок. Принцип работы такого кэша поясним на примере несекторированного кэша объемом 256 Кбайт с размером строки 32 байта и объемом кэшируемой основной памяти 64 Мбайт — типичный кэш системной платы для Pentium. Структуру памяти в такой системе иллюстрирует рис. 2.
Кэшируемая основная память условно разбивается на страницы (в данном случае 256), размер которых совпадает с размером кэш-памяти (256 Кбайт). Кэш-память (и условно страницы основной памяти) делится на строки (256К / 32 = 8К строк). Архитектура прямого отображения подразумевает, что каждая строка кэша может отображать из любой страницы кэшируемой памяти только соответствующую ей строку (на рисунке они находятся на одном горизонтальном уровне). Поскольку объем основной памяти много больше объема кэша, на каждую строку кэша может претендовать множество блоков памяти с одинаковой младшей частью адреса (смещением внутри страницы). Одна строка в определенный момент может, естественно, содержать копию только одного из этих блоков. Номер (адрес) строки в кэш-памяти называется индексом (index). Тег несет информацию о том, какой именно блок занимает данную строку (то есть старшая часть адреса или номер страницы). Память тегов должна иметь количество ячеек, равное количеству строк кэша, а ее разрядность должна быть достаточной, чтобы вместить старшие биты адреса кэшируемой памяти, не попавшие на шину адреса кэш-памяти. Кроме адресной части тега с каждой строкой кэша связаны биты признаков действительности и модифицированности данных.
В начале каждого обращения к кэшируемой памяти контроллер первым делом считывает ячейку каталога с заданным индексом, сравнивает биты адреса тега со старшими битами адреса памяти и анализирует признак действительности. Этот анализ выполняется в специальном цикле слежения (snoop cycle), иногда его называют циклом запроса (inquire). Если в результате анализа выясняется, что требуемый блок не находится в кэше, то генерируется (или продолжается) цикл обращения к основной памяти (случай кэш-промаха). В случае попадания запрос обслуживается кэш-памятью. В случае промаха после считывания основной памяти приемником информации новые данные помещаются в строку кэша (если она чистая), а в ее тег помещаются старшие биты адреса и устанавливается признак действительности данных. Независимо от объема затребованных данных из основной памяти строка переписывается в кэш вся целиком (поскольку признак действительности относится ко всем ее байтам). Если контроллер кэша реализует упреждающее считывание (read ahead), то в последующие свободные циклы шины обновится и следующая строка (если она была чистой). Чтение «про запас» позволяет при необходимости осуществлять пакетный цикл чтения из кэша через границу строки.
Такой
кэш имеет самую простую
Объем кэшируемой памяти (MCACHED) при архитектуре прямого отображения определяется объемом кэш-памяти (VCACHE) и разрядностью памяти тегов (N):
MCACHED = VCACHE x 2N, в нашем случае MCACHED = 256 Кбайт х 28 = 64 Мбайт.
Иногда в описании кэша прямого отображения фигурирует понятие набор (set), что может сбить с толку. Оно применяется вместо термина строка (line) в секторированном кэше прямого отображения, а сектор тогда называют строкой. С набором (как и строкой несекторированного кэша) связана информация о теге, относящаяся ко всем элементам набора (строкам или секторам). Кроме того, каждый элемент набора (строка или сектор) имеет собственный бит действительности в кэш-каталоге (рис. 3).
Рис. 3. Секторированный кэш прямого отображения.
2.2 Наборно-ассоциативный кэш.
Наборно-ассоциативная архитектура кэша позволяет каждому блоку кэшируемой памяти претендовать на одну из нескольких строк кэша, объединенных в набор (set). Можно считать, что в этой архитектуре есть несколько параллельно и согласованно работающих каналов прямого отображения, где контроллеру кэша приходится принимать решение о том, в какую из строк набора помещать очередной блок данных.
В простейшем случае каждый блок памяти может помещаться в одну из двух строк (Two Way SetAssociative Cache). Такой кэш должен содержать два банка памяти и тегов (рис. 4).
Рис. 4. Двухканальный наборно-ассоциативный кэш.
Номер набора (индекс), в котором может отображаться затребованный блок данных, однозначно определяется средней частью адреса (как номер строки в кэше прямого отображения). Строка набора, отображающая требуемый блок, определяется сравнением тегов (как и в ассоциативном кэше), параллельно выполняемым для всех каналов кэша. Кроме того, с каждым набором должен быть связан признак, определяющий строку набора, подлежащую замещению новым блоком данных в случае кэш-промаха (на рис. 4 в ее сторону указывает стрелка). Кандидатом на замещение обычно выбирается строка, к которой дольше всего не обращались (алгоритм LRU — Least Recently Used). При относительно большом количестве каналов (строк в наборе) прибегают к некоторому упрощению — алгоритм PseudoLRU для четырех строк (Four Way Set Associative Cache) позволяет принимать решения, используя всего 3 бита. Возможно также применение алгоритма замещения FIFO (первым вошел — первым и вышел) или даже случайного (random) замещения, что проще, но менее эффективно.
Наборно-ассоциативная архитектура широко применяется для первичного кэша современных процессоров. Объем кэшируемой памяти определяется так же, как и в предыдущем варианте, но здесь будет фигурировать объем одного банка (а не всего кэша) и разрядность относящихся к нему ячеек тега.
2.3. Ассоциативный кэш.
В отличие от предыдущих у полностью ассоциативного кэша любая его строка может отображать любой блок памяти, что существенно повышает эффективность использования его ограниченного объема. При этом все биты адреса кэшированного блока, за вычетом бит, определяющих положение (смещение) данных в строке, хранятся в памяти тегов. В такой архитектуре для определения наличия затребованных данных в кэш-памяти требуется сравнение со старшей частью адреса тегов всех строк, а не одной или нескольких, как при прямом отображении или наборно-ассоциативной архитектуре. Естественно, последовательный перебор ячеек памяти тегов отпадает — на это может уйти слишком много времени. Остается параллельный анализ всех ячеек, что является сложной аппаратной задачей, которая пока решена только для небольших объемов первичного кэша в некоторых процессорах. Применение полностью ассоциативной архитектуры во вторичном кэше пока не предвидится.
3. Алгоритмы и принцип действия.
3.1 Алгоритмы замещения данных.
При возникновении промаха, контроллер кэш-памяти должен выбрать подлежащий замещению блок. Польза от использования организации с прямым отображением заключается в том, что аппаратные решения здесь наиболее простые. Выбирать просто нечего: на попадание проверяется только один блок и только этот блок может быть замещен. При полностью ассоциативной или множественно-ассоциативной организации кэш-памяти имеются несколько блоков, из которых надо выбрать кандидата в случае промаха. Как правило, для замещения блоков применяются две основных стратегии: случайная (Random) и LRU.
В первом случае, чтобы иметь равномерное распределение, блоки-кандидаты выбираются случайно. В некоторых системах, чтобы получить воспроизводимое поведение, которое особенно полезно во время отладки аппаратуры, используют псевдослучайный алгоритм замещения.
Во втором случае, чтобы уменьшить вероятность выбрасывания информации, которая скоро может потребоваться, все обращения к блокам фиксируются. Заменяется тот блок, который не использовался дольше всех (LRU - Least-Recently Used).
Достоинство случайного способа заключается в том, что его проще реализовать в аппаратуре. Когда количество блоков для поддержания трассы увеличивается, алгоритм LRU становится все более дорогим и часто только приближенным. В таблице показаны различия в долях промахов при использовании алгоритма замещения LRU и случайного алгоритма.
|
Таблица. Сравнение долей промахов для алгоритма LRU и
случайного алгоритма замещения при нескольких размерах кэша и
разных ассоциативностях при размере блока 16 байт
3.2 Алгоритмы псевдо-LRU.
Алгоритм псевдо-LRU действует следующим образом. Когда в цикле считывания происходит промах и в кэш-память необходимо передать из памяти новую строку, приходится выбирать для заполнения одну из четырех строк множества. Если в множестве есть недостоверная строка (ее бит достоверности содержит 0), то для заполнения выбирается именно эта строка. Когда же все строки в множестве достоверны (все 4 бита достоверности содержат 1), заменяемая строка выбирается с привлечением бит из блока LRU.
Обозначим строки в множестве через L0, L1, L2 и L3. Каждому множеству в блоке LRU соответствуют три бита В0, В1 и В2, которые модифицируются при каждом попадании и заполнении следующим образом:
—
если последнее обращение в
— если последнее обращение в паре L0—L1 было к строке L0, то бит В1 устанавливается в состояние 1, а при обращении к строке L1 бит В1 сбрасывается в 0;
— если последнее обращение в паре L2—L3 было к строке L2, то бит В2 устанавливается в состояние 1, а при обращении к строке L3 бит В2 сбрасывается в 0.
Выбор
заменяемой строки (когда все строки
в множестве достоверны) определяет
содержимое бит В0, В1 и В2:
|