Экспертные системы

Автор работы: Пользователь скрыл имя, 22 Января 2011 в 12:21, реферат

Описание работы

Устройство экспертных систем

Файлы: 1 файл

Экспертные системы.doc

— 100.50 Кб (Скачать файл)

Министерство  образования и  науки Российской Федерации

Федеральное агентство по образованию

Российский  Государственный  Социальный Университет 
 
 
 
 
 
 

Реферат

По дисциплине «Искусственны интеллект» 
 

«Экспертные системы» 
 
 
 
 
 
 
 
 
 
 
 
 

Выполнил: Хузин М.А.

Группа: ДИ-6

Проверил  Зубарев К.Н.

 

      Назначение экспертных систем

 

     В начале восьмидесятых годов в  исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин «инженерия знаний», введенный Е. Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».

     Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

  • технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;
  • технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;
  • высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;
  • объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей «прозрачности» приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.

     По  мнению ведущих специалистов, в недалекой перспективе ЭС найдут следующее применение:

  • ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
  • технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

     ЭС  предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.

     Неформализованные задачи обычно обладают следующими особенностями:

  • ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
  • ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
  • большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
  • динамически изменяющимися данными и знаниями.

     Следует подчеркнуть, что неформализованные  задачи представляют большой и очень  важный класс задач. Многие специалисты  считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

     Экспертные  системы и системы искусственного интеллекта отличаются от систем обработки  данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод  и эвристический поиск решения (а не исполнение известного алгоритма).

     Экспертные  системы применяются для решения  только трудных практических (не игрушечных) задач. По качеству и эффективности  решения экспертные системы не уступают решениям эксперта-человека. Решения  экспертных систем обладают «прозрачностью», т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

     Коммерческие успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960–1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988–1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

     Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.

     Причины, приведшие СИИ к коммерческому  успеху, следующие.

     Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

     Открытость  и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

     Использование языков традиционного  программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

     Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило: снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

     Проблемно/предметно-ориентированные  ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно / предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты, классы, правила, процедуры).

     Об  экспертных системах (ЭС) можно говорить много и сложно. Но наш разговор очень упростится, если мы будем  исходить из следующего определения  экспертной системы. Экспертная система  – это программа (на современном уровне развития человечества), которая заменяет эксперта в той или иной области.

     Отсюда  вытекает простой вывод – все, что мы изучаем в курсе «Основы проектирования систем с ИИ», конечной целью ставит разработку ЭС. В этой главе мы остановимся только на некоторых особенностях их построения, которые не затрагиваются в остальных главах.

     ЭС  предназначены, главным образом, для  решения практических задач, возникающих  в слабо структурированной и  трудно формализуемой предметной области. ЭС были первыми системами, которые  привлекли внимание потенциальных потребителей продукции искусственного интеллекта.

     С ЭС связаны некоторые распространенные заблуждения.

     Заблуждение первое: ЭС будут делать не более (а  скорее даже менее) того, чем может  эксперт, создавший данную систему. Для опровержения данного постулата можно построить самообучающуюся ЭС в области, в которой вообще нет экспертов, либо объединить в одной ЭС знания нескольких экспертов, и получить в результате систему, которая может то, чего ни один из ее создателей не может.

     Заблуждение второе: ЭС никогда не заменит человека-эксперта. Уже заменяет, иначе зачем бы их создавали?

     Экспертные  системы, методика построения

     В настоящее время сложилась определенная технология разработки ЭС, которая  включает следующие шесть этапов: идентификация, концептуализация, формализация, выполнение, тестирование и опытная эксплуатация.

     Типичная  статическая ЭС состоит из следующих основных компонентов:

  • решателя (интерпретатора);
  • рабочей памяти (РП), называемой также базой данных (БД);
  • базы знаний (БЗ);
  • компонентов приобретения знаний;
  • объяснительного компонента;
  • диалогового компонента.

     База  данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

     База  знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

     Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

     Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

     Объяснительный  компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. 

       

     Диалоговый  компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

     В разработке ЭС участвуют представители  следующих специальностей:

     эксперт в проблемной области, задачи которой  будет решать ЭС;

Информация о работе Экспертные системы