Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 04:26, Не определен
Доклад
ANITA Mark VIII, 1961 год
В 1948 году появился Curta — небольшой механический калькулятор, который можно было держать в одной руке. В 1950-х — 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII, который использовал дисплей на трубках «Nixie» и 177 миниатюрных тиратроновых трубок. В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на трубках «Nixie» и мог вычислять логарифмы.
В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс», выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве.
Дифференциальный анализатор, Кембридж, 1938 год
Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие физические явления значениями электрического напряжения и тока.
Этот
раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
Репродукция компьютера Zuse Z1 в Музее техники, Берлин
В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей.
Следующая машина Цузе — Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой. Замена сложной в реализации десятичной системы на двоичную, сделала машины Цузе более простыми и, а значит, более надёжными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу.
Программы для Z3 хранились на перфорированной плёнке. Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 является универсальным компьютером (если игнорировать ограничения на размер физической памяти). В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти что и данные — предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.
Британский Colossus был использован для взлома немецких шифров в ходе Второй мировой войны.
Во время Второй мировой войны, Великобритания достигла определённых успехов во взломе зашифрованных немецких переговоров. Код немецкой шифровальной машины «Энигма» был подвергнут анализу с помощью электромеханических машин, которые носили название «бомбы». Такая «бомба», разработанная Аланом Тьюрингом и Гордоном Уэлшманом (англ. Gordon Welchman), исключала ряд вариантов путём логического вывода, реализованного электрически. Большинство вариантов приводило к противоречию, несколько оставшихся уже можно было протестировать вручную.
Немцы также разработали серию телеграфных шифровальных систем, несколько отличавшихся от «Энигмы». Машина Lorenz SZ 40/42 использовалась для армейской связи высокого уровня. Первые перехваты передач с таких машин были зафиксированы в 1941 году. Для взлома этого кода, в обстановке секретности, была создана машина «Колосс» (Colossus). Спецификацию разработали профессор Макс Ньюман (Max Newman) и его коллеги; сборка Colossus Mk I выполнялась в исследовательской лаборатории Почтового департамента Лондона и заняла 11 месяцев, работу выполнили Томми Флауэрс (Tommy Flowers) и др.
«Колосс» стал первым
полностью электронным
В 1937 году Клод Шеннон показал, что существует соответствие один-к-одному между концепциями булевой логики и некоторыми электронными схемами, которые получили название «логические вентили», которые в настоящее время повсеместно используются в цифровых компьютерах. Работая в МТИ, в своей основной работе он продемонстрировал, что электронные связи и переключатели могут представлять выражение булевой алгебры. Так своей работой A Symbolic Analysis of Relay and Switching Circuits он создал основу для практического проектирования цифровых схем.
В ноябре 1937 года Джорж Стибиц завершил в Bell Labs создание компьютера «Model K» на основе релейных переключателей. В конце 1938 года Bell Labs санкционировала исследования по новой программе, возглавляемые Стибицем. В результате этого, 8 января 1940 года был завершён Complex Number Calculator, умеющий выполнять вычисления над комплексными числами. 11 сентября 1940 года в Дартмутском колледже, на демонстрации в ходе конференции Американского математического общества, Стибиц отправлял компьютеру команды удалённо, по телефонной линии с телетайпом. Это был первый случай когда вычислительное устройство использовалось удалённо. Среди участников конференции и свидетелей демонстрации были Джон фон Нейман, Джон Моучли и Норберт Винер, написавший об увиденном в своих мемуарах.
Компьютер Атанасова—Берри
В 1939 году Джон Винсент Атанасов (John Vincent Atanasoff) и Клиффорд Берри (Clifford E. Berry) из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре. Соизобретатель ENIAC Джон Моучли изучал ABC в июне 1941 года, и между историками существуют споры о степени его влияния на разработку машин, последовавших за ENIAC. ABC был почти забыт, до тех пор пока в центре внимания не оказался иск «Хоневелл против Sperry Rand», постановление по которому аннулировало патент на ENIAC (и некоторые другие патенты), из-за того что, помимо других причин, работа Атанасова была выполнена раньше.
В 1939 году в Endicott laboratories
в IBM началась работа над Harvard Mark I. Официально
известный как Automatic Sequence Controlled Calculator,
Mark I был электромеханическим
ЭНИАК выполнял баллистические расчёты и потреблял мощность в 160 кВт
Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта (J. Presper Eckert), эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года. В то время, когда был предложен данный проект, многие исследователи были убеждены, что среди тысяч хрупких электровакуумных ламп многие будут сгорать настолько часто, что «ЭНИАК» будет слишком много времени простаивать в ремонте, и тем самым, будет практически бесполезен. Тем не менее, на реальной машине удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.
«ЭНИАК», безусловно, удовлетворяет требованию полноты по Тьюрингу. Но «программа» для этой машины определялась состоянием соединительных кабелей и переключателей — огромное отличие от машин с хранимой программой, появившихся позже. Тем не менее, в то время, вычисления, выполняемые без помощи человека, рассматривались как достаточно большое достижение, и целью программы было тогда решение только одной единственной задачи. (Улучшения, которые были завершены в 1948 году, дали возможность исполнения программы, записанной в специальной памяти, что сделало программирование более систематичным, менее «одноразовым» достижением.)
Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчёт, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти. Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров.