Источники питания компьютеров

Автор работы: Пользователь скрыл имя, 10 Февраля 2012 в 17:19, курсовая работа

Описание работы

Особенное внимание, при разработке источников питания, стали уделять при построении сложных цифровых устройств (персональный компьютер или другая микропроцессорная техника), где возникла потребность обеспечения этих устройств непрерывным и самое главное - качественным питанием. Пропадание напряжения для устройств этого класса может быть фатальным: медицинские системы жизнеобеспечения нуждаются в постоянной работе комплекса устройств, и требования к их питанию очень строги; системы банковской защиты и охранные системы; системы экстренной связи и передачи информации.

Файлы: 1 файл

Курсовой Проект.doc

— 217.00 Кб (Скачать файл)

     2) изменять выходное напряжение  и выходной ток под действием  управляющего сигнала;

     3) совместно с резервным источником  питания (аккумулятором или батареей) обеспечивать бесперебойное питание устройства, что особенно важно для микропроцессорных систем.

     Интегральные  АС-DС преобразователи представляют собой, по сути дела, готовые источники  питания. Например, преобразователь HV-2405E фирмы Harris semiconductor осуществляет прямое преобразование переменного тока (18 – 264 В) в постоянный (5 – 24 В). Выходной ток HV-2405E может достигать 50 мА. Для превращения микросхемы в компактный, легкий, дешевый и эффективный ИП необходимо только несколько недорогих внешних компонентов (не требуется никаких дополнительных трансформаторов и дросселей). HV-2405E заменяет собой трансформатор, выпрямитель и стабилизатор напряжения.

     Мощные  АС-DС конверторы способны отдавать ток в нагрузку значительно больший. Так отечественная микросхема 1182ЕМ3 обеспечивает выходной ток до 1,7 А и имеет встроенную защиту по току и встроенную защиту от перегрева. Правда для работы такой микросхемы потребуется подключение внешнего трансформатора или дросселя. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.Источники питания

     Как известно, электронный источник питания – это устройство, тем или иным способом решающее задачи изменения, управления или стабилизации поступающей в нагрузку электрической мощности.

     Наиболее  простым и до сих пор крайне широко применяющимся методом управления является поглощение избыточной мощности в управляющем устройстве, то есть банальное рассеивание ее в виде тепла. Источники питания, действующие по такому принципу, называются линейными.

     

     

     Рис. 3 – Схема линейного стабилизатора напряжения 

     Выше  представлена схема подобного источника  – линейного стабилизатора напряжения (рис. 3). Напряжение бытовой сети 220В понижается трансформатором T1 до необходимого уровня, после чего выпрямляется диодным мостом D1. Очевидно, что выпрямленное напряжение должно быть в любых условиях выше выходного напряжения стабилизатора – иначе говоря, необходима избыточная мощность; это следует из самого принципа работы линейного стабилизатора. В данном случае эта мощность выделяется в виде тепла на транзисторе Q1, который управляется некоторой схемой U1 так, чтобы выходное напряжение Uout находилось на требуемом уровне.

     Такая схема имеет два  существенных недостатка:

     Во-первых, низкая частота переменного тока в питающей сети (50 или 60Гц, в зависимости  от страны) обуславливает большие габаритные размеры и массу понижающего трансформатора – трансформатор мощностью 200–300 Вт будет весить несколько килограмм (не говоря уж о том, что в линейных стабилизаторах приходится применять трансформаторы на мощность вдвое большую, чем максимальная мощность нагрузки, ибо КПД линейного стабилизатора составляет около 50%, а трансформатор должен быть рассчитан на полную мощность, включая ту, что уйдет в тепло на самом стабилизаторе);

     Во-вторых, напряжение на выходе трансформатора должно во всех случаях превышать сумму выходного напряжения стабилизатора и минимального падения напряжения на регулирующем транзисторе; это означает, что в общем случае транзистору придется рассеивать весьма заметную избыточную мощность, что отрицательно скажется на КПД всего устройства.

     Для преодоления этих недостатков были разработаны так называемые импульсные стабилизаторы напряжения, в которых  управление мощностью происходит без  рассеивания мощности в самом  устройстве управления. В самом простейшем виде такое устройство можно представить как обычный ключ (роль которого может играть и транзистор), включенный последовательно с нагрузкой. В такой схеме средний протекающий через нагрузку ток зависит не только от сопротивления нагрузки и напряжения питания, но и от частоты переключению ключа – чем она больше, тем выше ток. Таким образом, меняя частоту переключения, мы можем регулировать средний ток через нагрузку, причем в идеале на самом ключе мощность не будет рассеиваться вообще – так как он пребывает только в двух состояниях: либо полностью открытом, либо полностью закрытым.

     В первом случае падение напряжения на нем равно нулю, во втором случае – нулю равен протекающий через  него ток, а потом выделяемая на нем  мощность, равная произведению тока на напряжение, также всегда равна нулю. В реальности, конечно, все немного иначе – в случае использования в качестве ключа транзисторов, во-первых, даже в открытом состоянии на них падает небольшое напряжение, во-вторых, процесс переключения происходит не мгновенно. Однако эти потери – следствие побочных явлений, и они намного меньше, чем выделяемая на устройстве управления линейного стабилизатора избыточная мощность.

     Если  сравнивать цифры, то КПД типичного  линейного стабилизатора составляет 25…50%, в то время как КПД импульсного может превышать 90%. Кроме того, если в импульсном стабилизаторе поставить ключ до понижающего трансформатора (очевидно, что, в общем-то, все равно, регулировать входное или выходное напряжение трансформатора – они неразрывно связаны друг с другом), то мы получаем возможность определять частоту работы трансформатора вне зависимости от частоты питающей сети. А так как габариты трансформатора уменьшаются с увеличением его рабочей частоты, то это позволяет использовать в импульсных стабилизаторах понижающие трансформаторы буквально игрушечных размеров по сравнению с их линейными аналогами, что дает колоссальный выигрыш в размерах готового устройства.

     Для примера, трансформатор на частоту 50 Гц и мощность 100 Вт весит чуть более  двух килограмм, в то время как трансформатор на ту же мощность, но на частоту 35 кГц весит всего лишь около 35 грамм. Это, разумеется, радикально влияет на габариты и массу всего источника питания – если посчитать отношение выходной мощности источника к его объему, то для импульсного источника питания, работающего на частоте в несколько десятков килогерц, оно составит примерно 4–5 Вт/куб. дюйм, в то время как для линейного стабилизатора этот показатель составляет всего лишь 0,3…1 Вт/куб. дюйм. Вместе с тем, с повышением частоты плотность мощности импульсного источника питания может доходить до 75 Вт/куб. дюйм, что совершенно недостижимо для линейных источников даже при водяном охлаждении. Кроме того, при таком исполнении импульсный стабилизатор значительно меньше зависит от величины входного напряжения – ведь чувствителен к этому в первую очередь понижающий трансформатор, а при включении ключа до него мы можем управлять напряжением и частотой его работы так, как надо нам.

     Соответственно, импульсные стабилизаторы абсолютно без особых проблем переносят уход напряжения питающей сети вплоть до 20% от номинала, в то время как у линейных добиться работы при пониженном напряжении сети можно лишь за счет дальнейшего снижения и без того невысокого КПД. Помимо трансформатора, использование высокой частоты позволяет в десятки раз уменьшить емкость и, соответственно, габариты сглаживающих конденсаторов (C1 и C2 на вышеприведенной схеме). Правда, это палка о двух концах – во-первых, далеко не все электролитические конденсаторы способны нормально работать на такой частоте, во-вторых, несмотря ни на что, в импульсном источнике питания технически весьма затруднительно получить размах пульсаций на выходе ниже 20 мВ, в то время как в линейных при необходимости без особых затрат уровень пульсаций может быть снижен до 5 мВ, и даже ниже.

     Очевидно, что работающий на частоте в несколько  десятков килогерц преобразователь  является источником помех не только в собственную нагрузку, но и в  питающую сеть, а также просто в  радиоэфир. Поэтому, при проектировании импульсных источников питания необходимо уделять внимание как фильтру на его входе (вопреки распространенному мнению, он не столько защищает блок питания от внешних помех, сколько защищает другие устройства от помех, создаваемых этим блоком питания), так и электромагнитной экранировке самого блока питания, что в случае мощных блоков означает использование стального корпуса.

     Линейные  блоки питания, хоть и более чувствительны  к внешним помехам, но сами никаких  помех не создают, а потому не требуют  никаких особых мер по защите окружающего оборудования.

Импульсные  источники питания требуют существенно более сложной (и, соответственно, дорогой) электроники, нежели их линейные собратья.

     Ценовое преимущество импульсных блоков очевидно для достаточно мощных изделий, где цена в первую очередь определяется стоимостью силового трансформатора и необходимого теплоотвода, а потому линейные источники с их большими габаритами и низким КПД оказываются в заведомом проигрыше; однако по мере удешевления компонентов импульсных блоков питания они все больше и больше теснят и маломощные линейные источники – так, уже не являются редкостью импульсные блоки питания мощностью в единицы ватт (например, зарядные устройства мобильных телефонов), хотя еще несколько лет назад на таких мощностях преимущества линейных источников были очевидны.

     Если  же говорить о задачах, в которых  определяющим параметром являются габариты, то тут импульсные источники питания  находятся вне конкуренции –  при всех конструкторских ухищрениях, получить от линейного источника ту же плотность мощности, что и от импульсного, невозможно. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.Источники питания компьютеров

     В настоящее время все используемые в компьютерах источники питания  – импульсные. Обусловлено это  тем, что для обеспечения разумных габаритов и тепловыделения необходимы плотность мощности и КПД, принципиально  недостижимые для линейных блоков питания  такой мощности – так, плотность мощности обычного ATX блока питания составляет 2…5 Вт/куб. дюйм (в зависимости от его выходной мощности), а КПД – не менее 68% при работе с максимальной нагрузкой. 

     

     Рис. 4 – блок-схема типичного компьютерного блока питания

     Выше  на рис. 4 приведена упрощенная блок-схема типичного компьютерного блока питания. Ниже на примере (рис. 5) блока Macropower MP-300AR показано типичное расположение компонентов в реальном блоке питания (в большинстве блоков других моделей никаких существенных отличий не будет):

     

      Рис. 5 – блок Macropower MP-300AR

     Питающее  напряжение 220 В проходит через двух- или трехзвенный фильтр, защищающий другие включенные в сеть устройства от создаваемых блоком питания помех. После фильтра напряжение поступает  на выпрямитель D1, а с него – на необязательную (но все чаще встречающуюся в новых блоках) схему коррекции фактора мощности (PFC – Power Factor Correction).

     

     Рис. 6 – схема двухзвенного фильтра

     Выше  представлена схема классического  двухзвенного фильтра (рис. 6), используемого в большинстве блоков питания. Как известно, помехи бывают двух видов – дифференциальные, когда ток помехи в проводах питания течет в разные стороны, и синфазные, когда ток помехи в проводах течет в одну сторону. Также можно сказать, что дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей.

     Дифференциальные  помехи в этой схеме достаточно легко  подавляются дросселями Ld и конденсатором Cx – при прохождении высокочастотной  помехи сопротивление первых для  нее велико, а второго – наоборот, мало. Хуже дело обстоит с синфазными помехами – отчасти их гасит дроссель Lc, обмотки которого намотаны так, что дроссель образует большое сопротивление для синфазных помех, однако этого недостаточно, и для действительно эффективного подавления синфазных помех устанавливаются два конденсатора Cy, точка соединения которых подключается к корпусу блока питания – и к заземлению, если таковое присутствует.

     Именно  с этими конденсаторами и связаны  основные вопросы пользователей. Очевидно, если корпус компьютера не заземлен, то благодаря конденсаторам на нем будет присутствовать половина сетевого напряжения, то есть 110 В. Взявшись одной рукой за любой заземленный предмет (например, за батарею отопления), а другой – за корпус компьютера, можно почувствовать легкое щекотание током. Впрочем, емкость этих конденсаторов весьма мала, а потому максимальный протекающий ток ничтожен – и не представляет для человека ровным счетом никакой опасности. Некоторую опасность он представляет для различной периферии – если при подключении, скажем, LPT-принтера к незаземленному компьютеру последний не выключен из розетки, то может оказаться так, что на сигнальных контактах LPT-разъема принтера окажутся те самые 110 В, а это уже может привести к выходу LPT-порта принтера или компьютера из строя. Впрочем, для борьбы с этим необязательно все заземлять – достаточно будет того, чтобы были надежно электрически соединены корпуса всех устройств, а это достигается, например, включением их в один удлинитель с трехконтактными розетками – именно через «земляной» контакт розеток они и окажутся соединены, а тогда портам ничто не грозит. Также ничто не угрожает и портам, рассчитанным на «горячее» подключение (например, FireWire и USB) – конструкция их разъемов такова, что «земляные» контакты в них всегда замыкаются первыми, обеспечивая надежное соединение корпусов устройств.

Информация о работе Источники питания компьютеров