Искуственный интеллект

Автор работы: Пользователь скрыл имя, 20 Мая 2010 в 17:13, Не определен

Описание работы

1 Происхождение и понимание термина „Искусственный интеллект“
2 Предпосылки развития науки искусственного интеллекта
3 Подходы и направления
3.1 Подходы к пониманию проблемы
3.1.1 Тест Тьюринга и интуитивный подход
3.1.2 Символьный подход
3.1.3 Логический подход
3.1.4 Агентно-ориентированный подход
3.1.5 Гибридный подход
3.2 Модели и методы исследований
3.2.1 Символьное моделирование мыслительных процессов
3.2.2 Работа с естественными языками
3.2.3 Накопление и использование знаний
3.2.4 Биологическое моделирование искусственного интеллекта
3.2.5 Робототехника
3.2.6 Машинное творчество
3.2.7 Другие области исследований
4 Современный искусственный интеллект
4.1 Положение дел
4.2 Применение
4.3 Перспективы
5 Связь с другими науками
5.1 Компьютерные технологии и кибернетика
5.2 Психология и когнитология
5.3 Философия
5.3.1 Вопросы создания ИИ
5.3.2 Этика
6 ИИ и общество
6.1 Религия
6.2 Научная фантастика
6.2.1 Кинофильмы
6.2.2 Аниме
6.2.3 Музыкальные произведения
7 Литература

Файлы: 1 файл

информатика антона.docx

— 103.82 Кб (Скачать файл)

Этот подход акцентирует  внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска пути и принятия решений.

 

Гибридный подход

 

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели  и методы исследований

Символьное  моделирование мыслительных процессов

 

Анализируя историю  ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теоремпринятие решений и теория игрпланирование и диспетчеризацияпрогнозирование.

Работа  с естественными  языками

 

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Накопление  и использование  знаний

 

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них — машинное обучение — касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

К области машинного  обучения относится большой класс  задач на распознавание образов. Например, это распознавание символоврукописного текстаречианализ текстов. Многие задачи успешно решаются с помощью биологического моделирования Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

Биологическое моделирование искусственного интеллекта

 

Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам, сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей ее функционирования.

Сюда можно отнести  несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы  внешней средой, называется агентным подходом.

Робототехника

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ. Примером интеллектуальной робототехники могут служить игрушки-роботы PleoAIBOQRIO.

Машинное  творчество

Природа человеческого  творчества ещё менее изучена, чем  природа интеллекта. Тем не менее, эта область существует, и здесь  поставлены проблемы написания компьютером музыки,литературных произведений (часто — стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие  области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти  самостоятельное направление. В  качестве примеров можно привести программирование интеллекта в компьютерных играхнелинейное управление, интеллектуальные системы информационной безопасности.

Можно заметить, что  многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

 

Современный искусственный интеллект

Положение дел

В настоящий момент в создании искусственного интеллект наблюдается вовлечение многих предметных областей, имеющих хоть какое-то отношение к ИИ. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Исследования ИИ влились  в общий поток технологий сингулярности (видового скачка, экспоненциального развития человека), таких как информатикаэкспертные системы, нанотехнология, молекулярная биоэлектроника, теоретическая биология, квантовая теория.

Применение

Некоторые из самых известных ИИ-систем:

  • Deep Blue — победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain.
  • MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.
  • 20Q — проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net.
  • Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.
  • Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Банки применяют системы  искусственного интеллекта (СИИ) в страховой  деятельности (актуарная математика) при игре на бирже и управлении собственностью. Методы распознавания  образов (включая, как более сложные  и специализированные, так и нейронные  сети) широко используют при оптическом и акустическом распознавании (в  том числе текста и речи), медицинской  диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие «Игровой искусственный интеллект». Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы

Можно выделить два  направления развития ИИ:

  1. решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека.
  2. создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

 

Связь с другими науками

Искусственный интеллект  вместе с нейрофизиологиейэпистемологией и когнитивной психологией образует более общую науку, называемую когнитология. Отдельную роль в искусственном интеллекте играет философия.

Также, с проблемами искусственного интеллекта тесно связана эпистемология — наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Производство знаний из данных — одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе — на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей.

Компьютерные  технологии и кибернетика

В компьютерных науках проблемы искусственного интеллекта рассматриваются с позиций проектирования экспертных систем и баз знаний. Под базами знаний понимается совокупность данных и правил вывода, допускающих логический вывод и осмысленную обработку информации. В целом исследования проблем искусственного интеллекта в компьютерных науках направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, а вопросы подготовки пользователей и разработчиков таких систем решаются специалистами информационных технологий.

Психология  и когнитология

Методология когнитивного моделирования предназначена для  анализа и принятия решений в  плохо определенных ситуациях. Была предложена Аксельродом.

Информация о работе Искуственный интеллект