Информатика как наука, ее особенности

Автор работы: Пользователь скрыл имя, 03 Декабря 2014 в 23:02, контрольная работа

Описание работы

Появление вычислительных машин в 50-х гг. создало до становления информатики необходимую ей аппаратную поддержку, нужную для хранения и переработки информации. Но, конечно, с информацией люди оперировали уже задолго до появления компьютеров. Начиная с древнего абака, дожившего до наших дней в виде конторских счетов, создавались приспособления для обработки числовой информации. Механические устройства типа арифмометров, счетные электрические клавишные машины, счетно-аналитическая техника и многие другие приборы были нацелены на решение тех же задач, которые в полном объеме стали реализовываться в компьютерах.

Файлы: 1 файл

ИНФОРМАТИКА.docx

— 120.82 Кб (Скачать файл)

Иногда ошибочно в литературе название «теория информации» используется для обозначения информатики. Коренное различие между этими науками состоит в том, что теория информации, игнорируя содержание передаваемого сообщения, исследует возможности его передачи по системам связи с наименьшими искажениями, а информатика основное внимание уделяет содержанию информации и ее использованию.

В последние десятилетия прошлого столетия была создана и активно развивается новая научная дисциплина - информациология. Последователи информациологии рассматривают ее не просто как науку, а как «единственную генерализационную идеологию жизнедеятельности, согласия, мира и научно-технического прогресса всего человечества». Согласно положениям данной науки информация является всеобщей генеративной основой Вселенной. Благодаря информации появилась Вселенная - возникли галактики, планеты, в том числе Земля и жизнь на ней. Предметом информациологии являются исследования информационных макро- и микродинамических процессов и явлений, происходящих в природе и обществе во взаимоотношениях, взаимосвязях и взаимодействиях с овеществленными, неовеществленными и вакуумными атрибутами материализации и дематериализации, а также процессов рецепции, передачи, хранения, обработки, визуализации и познания информации.

Информатика рассматривается в рамках этого подхода как составная часть информациологии. Каких-либо строгих теоретических доказательств и примеров практической реализации предложенных формулировок до настоящего времени не опубликовано. В связи с этим количество последователей данной теории крайне малочисленно.

 

2. РЕШЕНИЕ ЗАДАЧ ИМИТАЦИОННОГО  МОДЕЛИРОВАНИЯ. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ПРИМЕРЫ

 

Понятие имитационного моделирования

Можно дать следующее определение понятия модель: это такое описание, которое исключает несущественные подробности и учитывает наиболее важные особенности системы. Моделирование же можно определить как методологию изучения системы путем наблюдения отклика модели на искусственно генерируемый входной поток. К. Шеннон пишет так: «Имитационное моделирование есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы...» Имитационное моделирование является экспериментальной и прикладной методологией, имеющей следующие цели:

  • описание поведения системы;
  • построение теорий и гипотез, которые могут объяснить наблюдаемое поведение;
  • использование этих теорий для предсказания будущего поведения системы, то есть тех воздействий, которые могут быть вызваны изменениями в системе или изменениями способов ее функционирования.

Авторы одной методологической работы сформулировали основные факторы, влияющие на принятие правильного решения по результатам моделирования:

  • адекватное понимание решаемой задачи, т. е. если задача не полностью определена и недостаточно четко описана, очень мало шансов, что ее решение принесет какую-либо пользу. Это фундаментальное утверждение относится ко всем задачам, а не только к моделированию.
  • корректная модель. Это первостепенный фактор для технически или экономически эффективного решения, если брать всю задачу в целом. Ошибки в модели, если они не выявлены, скорее всего, приведут к принятию результатов, основанных на неверной модели. Стоимость такого типа ошибок обычно очень высока. Даже если ошибка обнаружена, но это произошло на поздних этапах проекта, стоимость исправлений включает также и повторное прохождение всех предшествующих этапов.
  • корректная программа. Программирование — последний этап разработки, и корректная программа может быть написана только по корректной модели. Аргументы в пользу корректности программы такие же, что и для модели.
  • планирование эксперимента. Разработка модели и программы должна отражать цели, для которых выполняется моделирование. Для получения требуемых ответов программе нужно правильно задать вопросы, то есть спланировать последовательность вычислительных экспериментов с полным пониманием проблемы.
  • интерпретация результатов. Никакая моделирующая программа не дает ответа со стопроцентной достоверностью. Результаты моделирования получаются на основе обработки случайных чисел, поэтому для их правильного понимания требуется применение статистических методов.

Таким образом, моделирование — это больше, чем просто программа. Достижение целей моделирования требует пристального внимания ко всем указанным факторам.

Типовая последовательность имитационного моделирования включает следующие этапы:

  1. Концептуальный: разработка концептуальной схемы и подготовка области исходных данных;
  2. Математический: разработка математических моделей и обоснование методов моделирования;
  3. Программный: выбор средств моделирования и разработка программных моделей;
  4. Экспериментальный: проверка адекватности и корректировка моделей, планирование вычислительных экспериментов, непосредственно моделирование, интерпретация результатов.

Имитационное моделирование на компьютере, в принципе, позволяет проанализировать любую реальную систему произвольной сложности. Концептуально, промоделировать сложную систему так же легко, как и простую, разница будет состоять только в объеме программного кода. Имитационная модель может учесть любой нюанс в дисциплине обслуживания всего лишь путем небольшой модификации текста одной-двух процедур, а в аналитической модели это может потребовать коренной переделки всех уравнений, сделать модель необозримо сложной или оказаться вообще невозможным. Этот факт отражает как силу, так и слабость имитационной методологии. С одной стороны, имитационное моделирование даст метод анализа, применимый в тех случаях, когда математическая модель чрезмерно сложна и позволяет аналитику получить более точные результаты. Но с другой стороны, имитационная модель не позволяет глубоко заглянуть в сущность системы, выявить ее «изюминки» и законы, по которым она живет, построить качественные зависимости между «входом» и «выходом», как это позволяет сделать математическая модель, если ее, конечно, удалось решить. То, что при взгляде на математический результат видно сразу, при имитационном моделировании может быть выявлено только в результате постановки значительного количества экспериментов (еще говорят «прогонов»).

Главная и наиболее очевидная цель имитационного моделирования — выяснить, как повлияют на производительность отдельные изменения конфигурации системы или увеличение нагрузки на нее. Процесс моделирования включает три фазы. На фазе валидации строится базовая модель существующей системы, проверяются и обосновываются предположения, лежащие в ее основе. На фазе проектирования модель используется в прогностических целях для предсказания влияния различных модификаций на производительность. На фазе верификации реальная производительность модифицированной системы сравнивается с результатами моделирования. Взятые вместе, эти три фазы образуют модельный цикл.

Фаза валидации.

Начинается с описания модели и включает выбор тех ресурсов и элементов деятельности, которые будут представлены; выявление особенностей системы, которые требуют внимания; выбор структуры модели; процедуры расчета необходимых показателей по результатам имитационного эксперимента.

Далее в реально функционирующей системе проводятся замеры входных параметров, которые послужат рабочим материалом для модели, а также замеры производительности, результаты которых будут сравниваться с выходными данными модели для оценки ее точности. Модель проверяется, в результате чего может потребоваться внести в нее изменения. Значимые различия между выходными данными системы и модели свидетельствуют об изъянах модели - какое-то допущение оказалось некорректным, какие-то факторы проигнорированы неправомерно. Но и отсутствие таких различий еще не гарантирует того, что модель сумеет правильно предвидеть влияние количественных и качественных изменений в системе.

Фаза проектирования.

На этой фазе входные параметры меняются в соответствии с модификацией системы, эффективность которой нужно проверить с помощью модели. Это довольно сложный и ответственный процесс, ведь необходимо правильно сформулировать вопрос дли модели. Результаты затем анализируются, их отличия от выходных данных исходной модели и представляют собой эффект от модификации системы.

Фаза верификации.

На фазе верификации измерения снимаются с обновленной системы, и снова проводится сравнение. Производительность системы сравнивается с данными моделирования. Наблюдаемые различия могут объясняться двумя причинами:

  • либо при составлении модели упущены некоторые ее свойства, что дает о себе знать не всегда, а лишь при стечении определенных обстоятельств;
  • либо система отреагировала на изменения совсем не так, как прогнозировалось в модели.

Кроме того, точность выходных данных модели не может быть лучше точности, с которой заданы входные параметры.

Модельный цикл отнюдь не является строго последовательным процессом. Между отдельными составляющими фаз валидации и проектирования могут существовать жесткие зависимости. Может потребоваться совместимость между описанием модели, замерами данных и методикой оценки модели. Достижение такой совместимости и ее согласование с конкретными целями моделирования являются по своей сущности процессами итерационными.

 

 

Простейшие задачи, решаемые имитационным моделированием

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

  • в первой – под имитационной моделью понимается математическая модель в классическом смысле;
  • во второй – этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;
  • в третьей – предполагают, что имитационная модель отличается от обычной математической более детальным описанием , но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная , не вводится.

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

  1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.
  2. Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.
  3. В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика.

Трудности при построении математической модели сложной системы:

  • если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.;
  • реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;
  • возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам:

  1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.
  2. Осуществляется декомпозиция системы на более простые части-блоки.
  3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.
  4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.
  5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.
  6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

Информация о работе Информатика как наука, ее особенности