Докомпьютерная история развития вычислительной техники

Автор работы: Пользователь скрыл имя, 01 Декабря 2014 в 22:28, реферат

Описание работы

Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.

Файлы: 1 файл

17.docx

— 17.56 Кб (Скачать файл)

Докомпьютерная история развития вычислительной техники

Ручной период докомпьютерной эпохи

 Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.

 

 Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходили бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камушек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, пеcка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.

 

 Китайские счеты суан – пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки – с числами. У китайцев в основе счета лежала не десятка, а пятерка.

Суан - пан разделены на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части – по 2. Таким образом, для того, чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, а затем добавляли одну косточку в разряд единиц.

У японцев это же устройство для счета носило название серобян.

На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с 15 века получил распространение «дощатый счет», завезенный, видимо, западными купцами с ворванью и текстилем. «Дощатый счет» почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В 9 веке индийские ученые сделали одно из величайших открытий в математике. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир.

При записи числа, в котором отсутствует какой- либо разряд (например, 110 или 16004), индийцы вместо названия цифры говорили слово «пусто». При записи на месте «пустого» разряда ставили точку, а позднее рисовали кружок. Такой кружок называется «сунья».

Арабские математики перевели это слово по смыслу на свой язык – они говорили «сифр». Современное слово «нуль» происходит от латинского.

В конце 15 – начале 16 века Леонардо да Винчи создал 13- разрядное суммирующее устройство с десятизубными кольцами. Основу машины по описанию составляли стержни, на которые крепились два зубчатых колеса, большее с одной стороны стержня, а меньшее – с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - к полному обороту третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была, приводиться в движение набором грузов.

 

 

Механический этап

 

 Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Использование таких машин способствовало «автоматизации умственного труда».

Увеличение во второй половине 19 века вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышение требований к ней.

В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати.

Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.

Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков.  Оно проще валика конструктивно и имеет меньшие размеры.

Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые вначале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась миниатюризацией электронной техники, включая ВТ.

 

 

Электромеханический этап

 

 Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

 


Информация о работе Докомпьютерная история развития вычислительной техники