CASE-технологии проектирования автоматизированных информационных систем

Автор работы: Пользователь скрыл имя, 14 Ноября 2010 в 15:55, Не определен

Описание работы

Введение
Жизненный цикл программного обеспечения информационной системы
RAD-технологии прототипного создания приложений
Структурный метод разработки программного обеспечения
Использованная литература

Файлы: 1 файл

РЕФЕРАТ гот.doc

— 126.00 Кб (Скачать файл)

   Хранилище (накопитель данных) представляет собой  абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми.

   Накопитель  данных может быть реализован физически в виде микрофиши, ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т. д. Накопитель данных идентифицируется буквой "D" и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.

   Накопитель  данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно быть увязано с информационной моделью. Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т. д.

   Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление. Каждый поток данных имеет имя, отражающее его содержание.

   Первым  шагом при построении иерархии DFD является построение контекстных диаграмм. Обычно при проецировании относительно простых АИС строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Для сложных АИС строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.

   Иерархия  контекстных диаграмм определяет взаимодействие основных функциональных подсистем проектируемой АИС как между собой, так и с внешними входными и выходными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует АИС.

   Разработка  контекстных диаграмм решает проблему строгого определения функциональной структуры АИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке которых участвуют разные организации и коллективы разработчиков.

   После построения контекстных диаграмм полученную модель следует проверить на полноту  исходных данных об объектах системы  и изолированность объектов (отсутствие информационных связей с другими объектами). Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Каждый процесс на DFD, в свою очередь, может быть детализирован при помощи DFD или миниспецификации. При детализации должны выполняться следующие правила:

   ♦ правило балансировки — означает, что при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь детализируемая подсистема или процесс на родительской диаграмме;

   ♦ правило нумерации — означает, что при детализации процессов  должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т. д.

   Миниспецификация (описание логики процесса) должна формулировать  его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

   Миниспецификация  является конечной вершиной иерархии DFD. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком, исходя из следующих критериев:

   ♦ наличия у процесса относительно небольшого количества входных и выходных потоков данных (2—3 потока);

   ♦ возможности описания преобразования данных процессом в виде последовательного алгоритма;

   ♦ выполнения процессом единственной логической функции преобразования входной информации в выходную;

   ♦ возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20— 30 строк).

   При построении иерархии DFD переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Структуры данных конструируются из элементов данных и могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне. Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (кг, см и т. п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

   После построения законченной модели системы  ее необходимо верифицировать. В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

   Моделирование данных

   Цель  моделирования данных состоит в  обеспечении разработчика АИС концептуальной схемой базы данных в форме одной модели или нескольких локальных моделей, которые относительно легко могут быть отображены в любую систему баз данных.

   Наиболее  распространенным средством моделирования  данных являются диаграммы "сущность—связь" (ERD). С их помощью определяются важные для предметной области объекты (сущности), их свойства (атрибуты) и отношения друг с другом (связи). ERD непосредственно используются для проектирования реляционных баз данных (см. подразд. 2.2).

   Нотация ERD была впервые введена П. Ченом (P. Chen) и получила дальнейшее развитие в работах Баркера.

   Методология IDEF1

   Метод IDEF1, разработанный Т. Рэмеем (Т. Ramey), также основан на подходе П. Чена и позволяет построить модель данных, эквивалентную реляционной модели в третьей нормальной форме. В настоящее время на основе совершенствования методологии IDEF1 создана ее новая версия — методология IDEF1X. IDEF1X разработана с учетом таких требований, как простота изучения и возможность автоматизации. IDEF IX-диаграммы используются рядом распространенных CASE-средств (в частности, ERWin, Design/IDEF). 
 
 
 
 
 
 
 
 

Использованная  литература 

  • Федотова  Д.Э.  CASE – технологии: учебник – М: Горячая линия – Телеком, 2007
  • Трофимов В.Е., Лобачева И.Н.  Информационные системы в экономике – М: Юнити-Дана, 2008
  • Балдин Н.В., Уткин В.Б. Информационные системы и технологии в экономике – М: Юнити, 2007
  • Титоренко Т.А. Автоматизированные информационные технологии в экономике – М: Юнити, 2006
  • Барановская Т.П., Лойко В.И., Семенов М.И., Трубилин И.Т. Автоматизированные информационные технологии в экономике – М: Финансы и статистика, 2006
  • www.citforum.ru
  • www.interface.ru
  • msk.treko.ru

Информация о работе CASE-технологии проектирования автоматизированных информационных систем