Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 21:36, Не определен
доклад
}
}
}
Переменная Nmax содержит полную длину массива данных и окончательное количество элементов ДПФ. В таблице показано соответствие между выражениями в формуле (16) и переменными в программе.
|
Внешний цикл - это основные итерации. На каждой из них 2Nmax/N ДПФ (длиной по N/2 элементов каждое) преобразуются в Nmax/N ДПФ (длиной по N элементов каждое).
Следующий цикл по k представляет собой цикл синхронного вычисления элементов с индексами k и k + N/2 во всех результирующих ДПФ.
Самый внутренний цикл перебирает Nmax/N штук ДПФ одно за другим.
Именно так, а не иначе: сначала вычисляются элементы с номерами 0 и N/2, во всех ДПФ в количестве Nmax/N штук, потом с номерами 1 и N/2 + 1 и так далее. На рис.4 показана последовательность вычислений для N = 8. Такая последовательность обеспечивает однократное вычисление .
Обратите внимание, что x[mpNd2] вычисляется раньше, чем x[k], чтобы значение x[k] не было модифицировано прежде, чем будет использовано.
Алгоритм обратного дискретного преобразования Фурье отличается только тем, что вместо -j надо использовать +j и после всех вычислений поделить каждое x[k] на Nmax.
Для справки: произведение, сумма и экспонента для комплексных чисел вычисляются по формулам:
(x,y)(x',y')=(xx'-yy')(xy'+x'
(x,y)+(x',y')=(x+x')(y+y')
e-jv=(cos v, - sinv)
где v - действительное число.
В приведенной выше программе велико искушение для вычисления поворачивающих множителей использовать формулу:
. (17)
Это позволило бы избавиться от возведений в степень и обойтись одними умножениями, если заранее вычислить WN для N = 2, 4, 8,…, Nmax. Но то, что можно делать в математике, далеко не всегда можно делать в программах. По мере увеличения k поворачивающий множитель будет изменяться, но вместе с тем будет расти погрешность. Ведь вычисления с плавающей точкой на реальном компьютере совсем без погрешностей невозможны. И после N/2 подряд умножений в поворачивающем множителе может накопиться огромное отклонение от точного значения. Вспомним правило: при умножении величин их относительные погрешности складываются. Так что, если погрешность одного умношения равна s%, то после 1000 умножений она может достигнуть в худшем случае 1000s%.
Этого можно было бы избежать, будь число WN целым, но оно не целое при N > 2, так как вычисляется через синус и косинус:
Как же избежать множества обращений к весьма медленным функциям синуса и косинуса? Здесь нам приходит на помощь давно известный алгоритм вычисления степени через многократные возведения в квадрат и умножения. Например:
В данном случае нам понадобилось всего 5 умножений (учитывая, что не нужно вычислять дважды) вместо 13. В худшем случае для возведения в степень от 1 до N/2-1 нужно log2N умножений вместо N/2, что дает вполне приемлемую погрешность для большинства практических задач.
Можно сократить вдвое количество умножений на каждом шаге, если использовать результаты прошлых вычислений
,
для хранения которых нужно дополнительно log2(Nmax) комплексных ячеек памяти:
Если очередное не было вычислено предварительно, то берется двоичное представление k и анализируется. Каждому единичному биту соответствует ровно один множитель. В общем случае единице в бите с номером b (младший бит имеет номер 0) соответствует множитель , который хранится в b-й ячейке упомянутого выше массива.
Есть способ уменьшить количество умножений для вычисления до одного на два цикла. Но для этого нужно отвести N/2 комплексных ячеек для хранения всех предыдущих . Алгоритм достаточно прост. Нечетные элементы вычисляются по формуле (17). Четные вычисляются по формуле:
То есть, ничего не вычисляется, а берется одно из значений, вычисленных на предыдущем шаге, когда N было вдвое меньше. Чтобы не нужно было копировать величины на новые позиции достаточно их сразу располагать в той позиции, которую они займут при N = Nmax и вводить простую поправку Skew (см. листинг программы).
И последние пояснения относительно листинга.
Во-первых, здесь присутствует реализация простейших операций над комплексными числами (классы Complex и ShortComplex), оптимизированная под данную задачу. Обычно та или иная реализация уже есть для многих компиляторов, так что можно использовать и ее.
Во-вторых, массив W2n содержит заранее вычисленные коэффициенты W2, W4, W8,...,WNmax.
В-третьих, для
вычислений используются наиболее точное
представление чисел с
Для чего нужно быстрое преобразование Фурье или вообще дискретное преобразование Фурье (ДПФ)? Давайте попробуем разобраться.
Пусть у нас есть функция синуса x = sin(t).
Максимальная
амплитуда этого колебания
Период колебания равен 2π. Если мы хотим увеличить период до T, то надо умножить переменную t на коэффициент. Это вызовет растяжение графика по горизонтали: x = A sin(2πt/T).
Частота колебания обратна периоду: ν = 1/T. Также говорят о круговой частоте, которая вычисляется по формуле: ω= 2πν = 2πT. Откуда: x = A sin(ωt).
И, наконец, есть фаза, обозначаемая как φ. Она определяет сдвиг графика колебания влево. В результате сочетания всех этих параметров получается гармоническое колебание или просто гармоника:
Очень похоже выглядит и выражение гармоники через косинус:
Большой разницы нет. Достаточно изменить фазу на π/2, чтобы перейти от синуса к косинусу и обратно. Далее будем подразумевать под гармоникой функцию косинуса:
x = A cos(2πt/T + φ) = A cos(2πνt + φ) = A cos(ωt + φ) (18)
В природе и технике колебания, описываемые подобной функцией чрезвычайно распространены. Например, маятник, струна, водные и звуковые волны и прочее, и прочее.
Преобразуем (18) по формуле косинуса суммы:
x = A cos φ cos(2πt/T) - A sin φ sin(2πt/T) (19)
Выделим в (19) элементы, независимые от t, и обозначим их как Re и Im:
x = Re cos(2πt/T) - Im sin(2πt / T) (20)
Re = A cos φ, Im = A sin φ
По величинам Re и Im можно однозначно восстановить амплитуду и фазу исходной гармоники:
и (21)
Рассмотрим очень распространенную практическую ситуацию. Пусть у нас есть звуковое или какое-то иное колебание в виде функции x = f(t). Пусть это колебание было записано в виде графика для отрезка времени [0, T]. Для обработки компьютером нужно выполнить дискретизацию. Отрезок делится на N-1 равных частей, границы частей обозначим tn = nT/N. Сохраняются N значений функции на границах частей: xn = f(tn) = { x0, x1, x2,..., xN }.
В результате прямого дискретного преобразования Фурье были получены N значений для Xk:
(22)
Теперь возьмем обратное преобразование Фурье:
(23)
Выполним над этой формулой следующие действия: разложим каждое комплексное Xk на мнимую и действительную составляющие Xk = Rek + j Imk; разложим экспоненту по формуле Эйлера на синус и косинус действительного аргумента; перемножим; внесем 1/N под знак суммы и перегруппируем элементы в две суммы:
(24)
Это была цепочка равенств, которая начиналась с действительного числа xn. В конце получилось две суммы, одна из которых помножена на мнимую единицу j. Сами же суммы состоят из действительных слагаемых. Отсюда следует, что вторая сумма должна быть равна нулю. Отбросим ее и получим:
(25)
Поскольку при дискретизации мы брали tn = nT/N и , то можем выполнить замену: n = tnN/T. Следовательно, в синусе и косинусе вместо 2πkn/N можно написать 2πktn/T. В результате получим:
(26)
Сопоставим эту формулу с формулой (20) для гармоники:
x = Re cos(2πt/T) - Im sin(2πt / T) (20)
Слагаемые суммы
(26) аналогичны формуле (20), а формула
(20) описывает гармоническое
Выше объяснялось, каким образом формула вида (20) может быть преобразована в формулу вида (18):
x = A cos(2πt/T + φ) (18)
Выполним такое же преобразование для слагаемых суммы (26), преобразуем их из вида (20) в вид (18). Получим:
(27)
Далее будем функцию
Gk(t) = Ak cos(2πtk/T + φk) (28)
называть k-й гармоникой.
Для вычисления Ak и φk надо использовать формулу (21). Теперь выпишем в одном месте все формулы, которые связывают амплитуду, фазу, частоту и период каждой из гармоник с коэффициентами Xk:
(29)
Итак.
Физический смысл дискретного преобразования Фурье состоит в том, чтобы представить некоторый дискретный сигнал в виде суммы гармоник. Параметры каждой гармоники вычисляются прямым преобразованием, а сумма гармоник - обратным.
Предположим, что исходный сигнал состоял из суммы гармоник. fs(t) = As cos(2πtms / T + φs). Пусть мы этот сигнал подвергли дискретизации, выполнили над ним прямое и обратное преобразование Фурье. Представили в виде суммы гармоник Gk(t) = Ak cos(2πtk / T + φk), как это описано в предыдущей главе. Спрашивается, эти гармоники Gk - те же самые, что и исходные гармоники fs или нет? Оказывается, нет, не те. Но кое-какую информацию об исходных гармониках все же можно попытаться восстановить.
Эта задача имеет
практический интерес. Пусть нам
дан некий сигнал, который физически
получился как сумма