Биометрическая идентификация и аутентификация пользователя

Автор работы: Пользователь скрыл имя, 18 Ноября 2013 в 12:45, контрольная работа

Описание работы

Для идентификации личности современные электронные систем контроля и управления доступом (СКУД) используют устройства нескольких типов. Наиболее распространенными являются:
- кодонаборные устройства ПИН-кода (кнопочные клавиатуры);
- считыватели бесконтактных смарт-карт (интерфейс Виганда);
- считыватели проксимити-карт;
- считыватели ключа «тач-мемори»;
- считыватели штрих-кодов;

Содержание работы

Введение 3
1.Классификация и основные характеристики биометрических средств идентификации личности 4
2. Особенности реализации методов биометрического контроля 12
2.1 Идентификация по рисунку папиллярных линий 12
2.2 Идентификация по радужной оболочке глаз 25
2.3 Идентификация по капиллярам сетчатки глаз 22
2.4 Идентификация по геометрии и тепловому изображению лица 27
2.5 Идентификация но геометрии кисти руки 33
Заключение 36
Литература

Файлы: 1 файл

Биометрическая идентификация и аутентификация пользователя.doc

— 304.00 Кб (Скачать файл)

В методе, основанном на нейронной сети, характерные особенности обоих лиц - зарегистрированного и проверяемого сравниваются на совпадение. «Нейронные сети» используют алгоритм, устанавливающий соответствие уникальных параметров лица проверяемого человека и параметров шаблона, находящегося в базе данных, при этом применяется максимально возможное число параметров. По мере сравнения определяются несоответствия между лицом проверяемого и шаблона из базы данных, затем запускается механизм, который с помощью соответствующих весовых коэффициентов определяет степень соответствия проверяемого лица шаблону из базы данных. Этот метод увеличивает качество идентификации лица в сложных условиях.

Метод автоматической обработки изображения лица - наиболее простая технология, использующая расстояния и отношение расстояний между легко определяемыми точками лица, такими, как глаза, конец носа, уголки рта. Хотя данный метод не столь мощный, как «eigenfaces» или «нейронная сеть», он может быть достаточно эффективно использован в условиях слабой освещенности.

Задачу идентификации  личности человека по видеоизображению можно разбить на несколько этапов.

  1. Локализация лица в кадре.

Для локализации лица в кадре разработан алгоритм на основе нейронной сети, который сканирует исходное изображение в разных масштабах, оценивая по ключевым признакам каждый участок изображения с определенной вероятностью, и классифицирует, является ли данный участок лицом или нет. Выделение ключевых признаков осуществляется путем автоматического анализа достаточно большой обучающей выборки, охватывающей большинство возможных ситуаций (например, изменение внешности, условий освещенности, ракурса и т. п.).

  1. Определение положения головы.

Определение положения  головы человека является важным этапом и позволяет внести поправки при  дальнейшем распознавании. На этом этапе  созданная компанией трехмерная модель головы сопоставляется с изображением головы в кадре. При этом оцениваются такие параметры, как угол поворота головы по осям X, Y, Z, точный замер и смещение изображения в кадре.

  1. Отслеживание перемещения лица от кадра к кадру.

При идентификации движущегося  в поле зрения камеры человека необходимо отслеживать перемещение лица от кадра к кадру. Имея несколько изображений одного и того же человека в разных ракурсах, программа выбирает наиболее удачный с ее точки зрения кадр и сохраняет его в базе данных. Обрабатывая несколько изображений одного и того же человека в разных ракурсах, можно добиться очень высокой точности распознавания.

  1. Сравнение изображения с данными базы.

В настоящее время  компания ISS ведет разработки алгоритма сравнения лица с имеющимся в базе данных. Этот этап является логическим завершением в цепочке алгоритма идентификации личности по видеоизображению.

Оценочные характеристики при проверке эффективности различных  вариантов таких устройств приведены в табл. 5.

 

Таблица 5. Проверка эффективности распознавании черт лица

Условия оценки эффективности

Уровень ошибочных подтверждений, %

Уровень ошибочных отказов, %

Один и тот же день, одно и то же освещение

2

0,4

Один и тот же день, разное освещение

2

9

Разные дни

2

11

Разные дни в течение 1,5 лет

2

43


 

Основой любой системы  распознавания лица является метод  его кодирования. В ряде случаев используется анализ локальных характеристик для представления изображения лица в виде статистически обоснованных, стандартных блоков данных. Такой метод использует корпорация Viscionics в своей системе Facelt. Данный математический метод основывается на том, что все лица могут быть получены из репрезентативной выборки лиц с использованием современных статистических приемов. Они охватывают пиксели изображения лица и универсально представляют лицевые формы. Фактически в наличии имеется намного больше элементов построения лица, чем число самих частей лица. Идентичность лица определяется не только характерными элементами, но и способом их геометрического объединения (учитываются их относительные позиции). Полученный сложный математический код индивидуальной идентичности - шаблон Faceprint - содержит информацию, которая отличает лицо от миллионов других, и может быть составлен и сравнен с другими с феноменальной точностью. Шаблон не зависит от изменений в освещении, тона кожи, наличия/отсутствия очков, выражения лица, волос на лице и голове, устойчив к изменению в ракурсах до 35" в любых направлениях

В качестве примера действующей системы контроля доступа на базе распознавания лица можно привести систему распознавания посетителей мест для обналичивания чеков, установленных компанией Mr. Payroll в нескольких штатах США. По свидетельству представителей компании клиенты считают такую процедуру весьма удобной. При первом посещении производится цифровой снимок лица клиента, который передается в сервисный центр. При каждом следующем обращении система сверяет соответствующее изображение с лицом клиента и только после этого производит обналичивание чека. Выше уже упоминалась система распознавания лиц Facelt, разработанная корпорацией Visionics. Она успешно работает на улицах английского города Ньюхем, а также в аэропортах, на крупных стадионах и в торговых центрах США. Технология распознавания лица или множества лиц в сложных сценах Facelt позволяет автоматически обнаружить человеческое присутствие, определить месторасположение, выделить изображение, выполнить идентификацию.

Распознавание лица предусматривает  выполнение любой из следующих функций: аутентификация - установление подлинности  «один в один», идентификация - поиск  соответствия «один из многих».

Система Facelt автоматически оценивает качество изображения для опознания лица и, если необходимо, способна его улучшить. Она также создает изображение лица из сегментов данных, генерирует цифровой код или внутренний шаблон, уникальный для каждого индивидуума. В системе заложен режим слежения за лицами во времени, а также «сжатия» лица до размера 84 байт для использования в смарт-картах, штриховых кодах и других устройствах с ограниченным размером хранения.

Среди признаков лица, используемых для идентификации человека, наиболее устойчивыми и трудно изменяемыми является также признака изображения его кровеносных сосудов. Путем сканирования изображения лица в инфракрасном свете создается уникальная температурная карта лица - термограмма. Идентификация по термограмме обеспечивает показатели, сравнимые с показателями идентификации по отпечаткам пальцев.

 

2.5 Идентификация  но геометрии кисти руки

 

Метод идентификации  пользователей по геометрии руки по своей технологической структуре  и уровню надежности вполне сопоставим с методом идентификации личности по отпечатку пальца. Статистическая вероятность существования двух кистей рук с одинаковой геометрией чрезвычайно мала. Но признаки руки меняются с возрастом, а само устройство имеет сравнительно большие размеры.

Математическая модель идентификации по данному параметру  требует немного информации - всего 9 байт, что позволяет хранить  большой объем записей и быстро осуществлять поиск. Устройства идентификации  личности по геометрии руки находят  широкое применение. Так, в США устройства для считывания отпечатков ладоней в настоящее время установлены более чем на 8000 объектах. Наиболее популярное устройство Handkey сканирует как внутреннюю, так и боковую сторону ладони, используя для этого встроенную видеокамеру и алгоритмы сжатия. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т. п. Устройства, которые могут сканировать и другие параметры руки, в настоящее время разрабатываются несколькими компаниями, в том числе BioMet Partners, Palmetrics и BTG.

Представителем этого  направления разработок СКУД является американская компания Steller Systems, выпускающая терминал Identimat. Для считывания геометрических характеристик кисти ее кладут ладонью вниз на специальную панель. Через прорези в ее поверхности оптические сенсорные ячейки сканируют четыре кольца. Эти ячейки определяют стартовые точки по двум парам пальцев - указательному и среднему, безымянному и мизинцу. Каждый палец сканируется по всей длине, при этом замеряется длина, изгиб и расстояние до «соседа». Если каждое измерение укладывается в определенные допустимые рамки зарегистрированного эталонного набора данных, то результат аутентификации будет для пользователя положительным. Цифровой эталон хранится либо в базе данных, либо в памяти идентификационной карточки. При этом с целью обеспечения защиты данные шифруются.

Рассматриваемый терминал прост в обращении и надежен. Время обработки - всего 1 с; время  регистрации - 1,5 мин; вероятность ошибок 1-го рода- 0,01, 2-го рода - 0,015 (т.е. коэффициенты 1 и 1,5% соответственно). Для хранения эталона используется 17 байт памяти.

Отличительной особенностью алгоритма работы этого терминала  является наличие так называемых битов качества, которые регулируют рамки допустимых отклонений в зависимости от качества изображения кисти. Однако настораживает тот факт, что у каждого сотого сотрудника могут появиться проблемы с проходом на рабочее место. И каждый стопятидесятый может оказаться чужим.

На базе подобной технологии биометрии японская фирма Mitsubishi Electric построила контрольно-пропускной терминал автономного типа Palm Recognition System. Его отличие от американского прототипа состоит в том, что производится считывание геометрических размеров силуэта кисти руки со сжатыми пальцами, в то время как у американцев пальцы для измерения должны представляться растопыренными. Благодаря такому подходу на результатах оценки биометрических характеристик в японской системе не сказывается появление на ладони ран или грязи. Однако вероятность ошибок 1-го рода также составляет 0,01, но ошибок 2-го рода - 0,000001. Время обработки занимает 2 с, время регистрации при оформлении допуска - 20 с. Память системы позволяет хранить до 220 эталонов.

В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т. д. Достоинства идентификации по геометрии ладони сравнимы с достоинствами идентификации по отпечатку пальца с точки зрения надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.

 

 

 

Заключение

 

В заключение хочется  отметить, что обойтись без биометрической идентификации, если необходимо получить позитивные, надежные и неопровержимые результаты проверки, невозможно. Ожидается, что в самом ближайшем будущем пароли и ПИН-коды уступят место новым, более надежным средствам авторизации и аутентификации.

 

Литература

 

  1. Тихонов В А., Райх В. В. Информационная безопасность: концептуальные, правовые, организационные и технические аспекты: Уч. пособие. М.: Гелиос АРВ, 2009.
  2. Абалмазов Э. И. Энциклопедия безопасности. Справочник каталог, 2007.
  3. Тарасов Ю Контрольно-пропускной режим на предприятии. Защита информации // Конфидент, 2010. № 1. С. 55-61.
  4. Сабынин В. Н. Организация пропускного режима первый шаг к обеспечению безопасности и конфиденциальности информации // Информост -радиоэлектроники и телекоммуникации, 2011. № 3 (16).
  5. Мащенов Р. Г. Системы охранной сигнализации: основы теории и принципы построения: учебное пособие. М.: Горячая линия - Телеком, 2010
  6. Горлицин И. Контроль и управление доступом - просто и надежно КТЦ «Охранные системы», 2012.

 


Информация о работе Биометрическая идентификация и аутентификация пользователя