Автор работы: Пользователь скрыл имя, 05 Ноября 2009 в 16:12, Не определен
Реферат
3.2. Структурная схема системы
Более чем за полвека развития вычислительных средств прогресс в аппаратной реализации ЭВМ и их технических характеристик превзошел все прогнозы, и пока не заметно снижение его темпов. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом, пока не претерпели коренных изменений (за исключением систем параллельной обработки информации).
Любая ЭВМ неймановской архитектуры содержит следующие основные устройства:
В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором. Обобщенная логическая структура ЭВМ представлена на рис.
Рис. Обобщённая логическая структура ЭВМ
Процессор, или микропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислении по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для ее увеличения процессор использует собственную намять небольшого объема, именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ.
Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы — последовательности инструкций (команд), записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает ее, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.
Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве — памяти ЭВМ, куда они вводятся через устройство ввода. Емкость памяти измеряется в величинах, кратных байту. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.
Внутренняя, или основная память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины.
Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объему составляющая" большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.
Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.
Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.
ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для резервирования информации.
Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из нее, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. К ним относятся, в частности, дисплеи (мониторы), клавиатура, манипуляторы типа «мышь», алфавитно-цифровые печатающие устройства (принтеры), графопостроители, сканеры и др. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.
Системный интерфейс — это конструктивная часть ЭВМ, предназначенная для взаимодействия ее устройств и обмена информацией между ними.
В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.
Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В первых для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.
Пульт
управления служит для выполнения
оператором ЭВМ или системным программистом
системных операций в ходе управления
вычислительным процессом. Кроме того,
при техническом обслуживании ЭВМ за пультом
управления работает инженерно-технический
персонал. Пульт управления конструктивно
часто выполняется вместе с центральным
процессором.
3.3. Обеспечение мер безопасности на рабочем месте
Существует определенная совокупность санитар - гигиенических норм и требований, обеспечивающих комфортные условия труда и высокую работоспособность оператора ЭВМ.
Объем и площадь производственного помещения, которые должны приходиться на каждого работающего по санитарным нормам, должны быть не менее 15 куб.м. и 4.5 КВ.М, соответственно. Высота производственного помещения не должна быть менее 3,2м. Стены и потолки должны быть выполнены из малотеплопроводных материалов, не 'задерживающих осаждение пыли. Полы должны быть теплыми, эластичными, ровными и нескользкими.
Влияние температуры на работоспособность человека очень заметно. При 25°С начинается физическое утомление. При температуре 30°С и выше умственная деятельность ухудшается, замедляется реакция, возрастает число ошибок. Температура 11 °С является минимальной, так как при дальнейшем ее понижении начинается замерзание. Наиболее благоприятным является интервал от 17°С до 22°С, который и рекомендуется для поддержания в производственном помещении.
Нормальная
влажность воздух лежит в интервале
60..70%. Подвижность воздуха в
Для плавного регулирования и поддержания в необходимых пределах температуры и влажности воздуха в производственном помещении рекомендуется установить бытовой кондиционер.
Гигиенические исследования позволяют установить, что шум и вибрации ухудшают условия труда, оказывая вредное воздействие на организм человека. При длительном воздействии шума на организм человека происходят нежелательные явления: снижается острота зрения, слуха, повышается кровяное давление, понижается внимание. Сильный продолжительный шум может быть причиной функциональных изменений сердечнососудистой и нервной систем. Вибрации также неблагоприятно воздействуют на организм человека: они могут быть причиной функциональных расстройств нервной и сердечно сосудистой систем, а также опорно-двигательного аппарата. При этом заболевание сопровождается головными болями, головокружением, онемением рук (при передаче вибраций на руки), повышенной утомляемостью. Особенно вредна вибрация с частотой около 5 Гц, то есть с частотой, близкой к собственной частоте человеческого тела,
Согласно ГОСТ уровень шума в помещении программистов вычислительных машин не должен превышать 50 дБ. Согласно тому же ГОСТу, среднеквадратичное значение колебательной скорости для вибраций с частотами, близкими к 5 Гц, не должно превышав на рабочем месте значения 5 мм/с или 10дБ.
Для снижения уровня шума следует принимать следующие меры:
-
облицовка потолка и стен
- воздействие на источник шума;
-
создание звукопоглощающих
- обеспечение персонала средствами защиты от шума.
Освещенность
рабочего места является одним из
основных факторов, оказывающих влияние
на утомляемость и работоспособность.
Отрицательные последствия
-
не меньше 5 - 7 Лк при верхнем
и комбинированном
- не меньше 1,5 - 2 Лк при боковом естественном освещении;
-
не меньше 750-2000 Лк при системе
комбинированного
-
не меньше 300-500 Лк при системе
общего искусственного
3.3.1.
Электробезопасность
при эксплуатации ЭВМ
Электрические установки, к
Специфическая опасность
Проходя через тело человека, электрический ток оказывает на него сложное воздействие, вызывая при этом термическое, электролитическое, механическое и биологическое действие. Термическое действие тока проявляется в ожогах различных участках тела, нагреве ткани и биологических средств, что вызывает в них функциональное расстройство. Электролитическое действие тока выражается в разложение органической жидкости, крови и проявляется в изменении их физико-химического состава. Механическое действие тока приводит к разрыву мышечных тканей. Биологическое действие тока заключается в способности тока раздражать и возбуждать живые ткани организма.
На практике различают местные
электрические травы, когда