Автор работы: Пользователь скрыл имя, 05 Декабря 2010 в 13:50, Не определен
Данная контрольная работа, затрагивает тему «Анимация на webстраницах». Анимация на web страницах служит чаще всего для украшения. Иногда анимация применяется для поэтапного представления информации - в отдельных кадрах последовательно отображается слова какой-нибудь надписи или открывается все больший фрагмент изображения. Этот эффект привлекает и удерживает внимание наблюдателя.
Если брать во внимание только события, происходящие в Web-странице, то нужно иметь в виду, что события могут происходить как в самой странице, так и в отдельных ее элементах. В самом деле, если пользователь щелкает мышью на части страницы, не занятой какими-либо элементами, говорят, что событие происходит в самой странице. Если же пользователь щелкнет на графическом изображении или текстовом абзаце, событие происходит в этом графическом изображении или текстовом абзаце, то есть сообщение о наступлении события "щелчок левой кнопкой мыши" в первом случае получит сама страница, а во втором — один из ее элементов.
Что же нам делать с этими событиями, спросите вы? Обрабатывать.
Обработка события заключается в реакции на них. А для реакции на них используются особым образом написанные сценарии, называемые обработчиками событий. Обработчики привязываются к тем или иным событиям, происходящим в каком-либо элементе страницы или самой странице. И делается это с помощью особого расширения HTML, специально предназначенного для поддержки Web-сценариев.
В частности, если требуется, чтобы при наведении курсора мыши на изображение внизу появлялось его краткое описание, нужно сделать следующее. Под изображением помещается свободно позиционируемый элемент, содержащий текст описания, и этот элемент делается невидимым. Далее пишутся два сценария, привязанные к событиям, возникающим при наведении курсора мыши на графическое изображение и при "уводе" его прочь. Первый из этих сценариев делает элемент с описанием видимым, второй — невидимым. После этого написанные сценарии привязываются к соответствующим событиям, происходящим в элементе графического изображения. Вот и все.
В большинстве интерактивных Web-страниц большая часть сценариев представляет собой как раз обработчики событий. Именно они реализуют большую часть логики поведения страницы при взаимодействии с пользователем. (Хотя существует определенный процент сценариев, выполняемых сразу же после расшифровки; в основном, это код, производящий всяческие предустановки.) Такой подход, когда почти вся программа представляет собой обработчики событий, называется событийно-управляемым программированием.
Наконец-то дошла очередь и до анимации. Рассмотрим некоторые базовые понятия, без которых в дальнейшем нам не обойтись.
Анимировать можно только свободно позиционируемые элементы. Только свободные элементы могут быть помещены в любое место страницы, и лишь они могут управляться из сценариев.
Итак, за счет чего же достигается эффект анимации? Почему элемент страницы кажется движущимся по ней?
Дело
в том, что координаты элемента периодически
меняются. И меняются весьма быстро,
не реже 12 раз в секунду, за счет чего
мы и наблюдаем непрерывное
Но мало всего лишь изменить координаты элемента. Нужно изменить их по особому закону, описывающему траекторию движения элемента. Если элемент движется по прямолинейной траектории, этот закон очень прост. В случае криволинейного движения он сильно усложняется. Поэтому не стоит создавать на своих страницах слишком сложные анимации: маломощный компьютер просто не "потянет" чересчур замысловатые траектории.
Закон, по которому изменяются координаты анимированного элемента, иначе говоря, его траектория, описывается особой функцией (назовем ее функцией траектории). Такая функция принимает некоторые параметры и возвращает координаты элемента. Она имеет вид:
{х, у, z} = f(Q, q, dq)
С возвращаемыми этой функцией результатами все просто, х, у и z — координаты анимированного элемента, соответственно, горизонтальная, вертикальная и порядок перекрытия (уже знакомый вам z-индекс). Конечно, функция, возвращающая сразу три координаты, - это общий случай. Обычно изменяется одна или две координаты элемента — х и у.
А вот с параметрами, принимаемыми функцией, все несколько сложнее. Всего, как вы видите, их три, и назначение их неочевидно. Рассмотрим все эти параметры по порядку.
Самый первый параметр — Q. Это длина траектории движения анимированного элемента. Она может измеряться в пикселах, миллиметрах, градусах или каких-либо относительных единицах, например процентах. Вообще, единица измерения зависит от самой траектории: для прямолинейной больше подойдут пикселы или миллиметры, а для круговой — градусы или радианы. Важно одно: параметр Q должен каким-то образом обозначать полную длину траектории, по которой будет двигаться наш элемент.
Второй параметр (q) обозначает позицию на траектории, занимаемую в данный момент времени нашим элементом. Иными словами, это расстояние в единицах измерения траектории Q, которое он уже "пробежал". Получив его, наша функция должна сказать: "элемент здесь" и, что называется, "ткнуть пальцем" в точку на его траектории.
Последний, третий параметр — dq. Он задает приращение, на которое будет меняться дистанция q при каждом "скачке" анимированного элемента. Beличина этого параметра задает скорость движения анимированного элемента.
Итак, что же должна делать функция траектории. Ниже перечислены все ее задачи в порядке выполнения.
Это общий алгоритм, которому должны следовать все функции траектории, даже самые сложные. Фактически основная сложность заключается в реализации шага 2, то есть вычислении координат на основе значения q. Остальные шаги реализуются очень просто и не составят трудности даже для начинающего программиста.
В разговоре о простейшей анимации подразумевалось, что существует одна-единственная функция, реализующая ее. Реально для создания анимации может использоваться несколько программ-сценариев. Автор объединил их в одну функцию, чтобы вам было понятнее.
Предполагалось,
что когда анимированный
Конечно, зацикленная анимация выглядит эффектнее. Но злоупотреблять ей не стоит, особенно бесконечной.
Рассмотрен способ создания на Web-странице простейшей анимации. Но дело в том, что в реальной жизни такая анимация применяется крайне редко. Дело в том, что вышеописанный способ создания анимации имеет только одно более чем сомнительное достоинство и два огромнейших недостатка.
Достоинство — простота, более того, очевидность реализации. Любой программист, даже малоквалифицированный, может сесть и в пять минут накропать сценарий, реализующий движение элемента по прямолинейной траектории. Да, он это сделает, даже если до этого ни разу не занимался Web-программированием.
Представим двоих интернетчиков, решивших посетить его страничку с анимацией. У одного компьютер десятилетней давности, старенький, заслуженный, едва-едва обрабатывающий современные сложные Web-странички, даже без мультимедийных "наворотов". У другого — мощнейшая наисовременнейшая машина, только что сошедшая со сборочных столов какого-нибудь известного "брэнда". Вот они заходят-таки на страничку, загружают ее и принимаются наблюдать за анимацией.
Компьютер первого посетителя с натугой загрузит ее и, треща жестким диском, начнет ни шатко ни валко выполнять сценарии, реализующие анимацию. Анимированный элемент худо-бедно движется по странице, посетитель доволен — работает. Теперь оставим его и взглянем на посетителя номер два. Его компьютер мгновенно загрузит страничку и мгновенно же выполнит все сценарии. Анимированный элемент пролетит по своей траектории так быстро, что человеческий глаз его движения даже не заметит.
Спрашивается, кому нужна такая анимация?
Но это
полбеды. Беда настанет, если наш незадачливый
программист решит сделать
Но что делать? Ведь Web-программисты как-то реализуют анимацию на своих страницах, и она работает нормально, в смысле, не мешает пользователю прокручивать страницу и щелкать по ссылкам. Может, они знают какой-нибудь секрет?
Да, знают. И заключается этот секрет в том, что они используют немного другую функцию траектории:
{х, y, z} = f(Q, q, dq, t)
От уже знакомой нам функции она отличается тем, что принимает еще один параметр — t. Этот параметр — время. Иначе говоря, при расчете координат функция траектории учитывает текущее время. И анимация оказывается жестко привязанной к времени, которое везде течет одинаково, в отличие от тактовой частоты процессоров, которые различаются у разных компьютеров.
Как это реализуется? Дело в том, что новая функция выполняется не все время, пока работает анимация, а вызывается время от времени, тогда, когда нужно произвести очередной "скачок" анимации, и после этого прекращает свою работу, дожидаясь очередного вызова. Эта функция реализуется в виде сценария-обработчика внутреннего события — "тика" системного таймера.
Таким
образом, анимация оказывается четко
привязанной к времени. И на стареньком
компьютере посетителя номер один,
и на суперсовременной машине номера
два анимированный элемент
Далее. Так как функция траектории вызывается только время от времени, а не работает постоянно, пользователь может нормально взаимодействовать с Web-страницей. Web-обозревателю между "тиками" таймера остается предостаточно времени, чтобы обработать пользовательские запросы.
Список задач новой функции траектории в порядке выполнения.
Для реализации этой функции используются два сценария. Один из них выполняется при загрузке страницы и реализует задачу шага 1. Второй -собственно обработчик событий системного таймера — реализует задачи шагов 2—5.