Администрирование компьютерных сетей

Автор работы: Пользователь скрыл имя, 04 Марта 2010 в 17:56, Не определен

Описание работы

СОДЕРЖАНИЕ:
ВВЕДЕНИЕ
1. ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ
2. СЕТЕВЫЕ УСТРОЙСТВА И СРЕДСТВА КОММУНИКАЦИИ
3. РАЗВЕРТЫВАНИЕ ЛОКАЛЬНОЙ СЕТИ 20
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА

Файлы: 1 файл

kursovaya.doc

— 450.00 Кб (Скачать файл)

     Топология в виде звезды является наиболее быстродействующей  из всех топологий вычислительных сетей, поскольку передача данных между  рабочими станциями проходит через  центральный узел (при его хорошей  производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

     Производительность  вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

     Центральный узел управления - файловый сервер мотает реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра. [12,с103] 

     Кольцевая топология

     При кольцевой топологии сети рабочие  станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

     Прокладка кабелей от одной рабочей станции  до другой может быть довольно сложной  и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

     

     Рисунок 2. Кольцевая топология

     Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

     Основная  проблема при кольцевой топологии  заключается в том, что каждая рабочая станция должна активно  участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

     Подключение новой рабочей станции требует  кратко срочного выключения сети, так  как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

     

     Рисунок 3. Структура логической кольцевой цепи

     Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.[12,с96] 

     Шинная  топология

     При шинной топологии среда передачи информации представляется в форме  коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

     

     Рисунок 4. Шинная топология 

     Рабочие станции в любое время, без  прерывания работы всей вычислительной сети, могут быть подключены к ней  или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

     В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым  соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

     Новые технологии предлагают пассивные штепсельные  коробки, через которые можно отключать и/или включать рабочие станции во время работы вычислительной сети.

     Благодаря тому, что рабочие станции можно  включать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

     В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке снижаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point - точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

     В ЛВС с модулированной широкополосной передачей информации различные  рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.[12,с108]

Таблица 1.

     Характеристики  топологий вычислительных сетей

Характеристики Топология
Звезда Кольцо Шина
Стоимость расширения Незначительная Средняя Средняя
Присоединение абонентов Пассивное Активное Пассивное
Защита  от отказов Незначительная Незначительная Высокая
Размеры системы Любые Любые Ограниченны
Защищенность  от прослушивания Хорошая Хорошая Незначительная
Стоимость подключения Незначительная Незначительная Высокая
Поведение системы при высоких нагрузках Хорошее Удовлетворительное Плохое
Возможность работы в реальном режиме времени Очень хорошая Хорошая Плохая
Разводка  кабеля Хорошая Удовлетворительная Хорошая
Обслуживание Очень хорошее Среднее Среднее

     Древовидная структура ЛВС

     На  ряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

     

     Рисунок 5. Древовидная структура ЛВС 

     Вычислительные  сети с древовидной структурой применяются  там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и/или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

     На  практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

     Устройство  к которому можно присоединить максимум три станции, называют пассивным  концентратором. Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать нескольких десятков метров.[12,с116] 

 

2. СЕТЕВЫЕ УСТРОЙСТВА И СРЕДСТВА КОММУНИКАЦИИ

2.1. Основные группы  кабелей

     На  сегодняшний день подавляющая часть  компьютерных сетей использует для  соединения провода или кабели. Они  выступают в качестве среды передачи сигналов между компьютерами. Существует три основные группы кабелей: коаксиальный кабель, витая пара и оптоволоконный кабель.

     Коаксиальный  кабель подразделяется на два типа – тонкий и толстый. Оба они  имеют медную жилу, окруженную металлический  оплеткой, которая поглощает внешние  шумы и перекрестные помех. Коаксиальный кабель удобен для передачи сигналов на большие расстояния. Он прост по конструкции, имеет небольшую массу и умеренную стоимость. В тоже время обладает хорошей электрической изоляцией, допускает работу на довольно больших расстояниях (несколько километров) и высоких скоростях.

     Витая пара может быть экранированной и  неэкранированной. Неэкранированная витая  пара (UTP) делится на пять категорий, из которых пятая – наиболее популярная в сетях. Экранированная витая пара (STP) поддерживает передачу сигналов на более высоких скоростях и на большее расстояние, чем UTP. Витая пара, хотя дешева и широко распространена, благодаря наличию на многих объектах резервных пар в телефонных кабелях, плохо защищена от электрических помех, от несанкционированного доступа, ограничена по дальности и скорости подачи данных.

     Оптоволоконный  кабель имеет небольшую массу, способен передавать информацию с очень высокой  скоростью, невосприимчив к электрическим  помехам, сложен для несанкционированного доступа и полностью пожаро-  и взрывобезопасен (обгорает только оболочка), но он дороже и требует специальных навыков для установки.[16,с251]  

     Передача сигналов

     Существует  две технологии передачи данных: широкополосная и узкополосная. При широкополосной передачи с помощью аналоговых сигналов в одном кабеле одновременно организуется несколько каналов. При узкополосной передаче канал всего один, и по нему передаются цифровые сигналы.

2.2. Беспроводные  сети

     Беспроводная  среда постепенно входит в нашу жизнь. Как только технология окончательно сформируется, производители предложат широкий выбор продукции по приемлемым ценам, что приведет и к росту спроса на нее, и к увеличению объема продаж. В свою очередь это вызовет дальнейшее совершенствование и развитие беспроводной среды.

     Трудность установления кабеля – фактор, которой  дает беспроводной среде неоспоримое  преимущество. Она может оказаться  особенно полезной в следующих ситуациях:

    • в помещения, сильно заполненных людьми,
    • для людей, которые не работают на одном месте,
    • в изолированных помещениях и зданиях,
    • в помещениях, планировка которых часто меняется,
    • в строениях, где прокладывать кабель непозволительно.

     Беспроводные  соединения используются для передачи данных в ЛВС, расширенных ЛВС  и мобильных сетях. Типичная беспроводная сеть работает так же, как и кабельная сеть. Плата беспроводного адаптера с трансивером установлена в каждом компьютере, и пользователи работают так, будто их компьютеры соединены кабелем.

Информация о работе Администрирование компьютерных сетей