Автор работы: Пользователь скрыл имя, 02 Октября 2011 в 17:52, реферат
Рассмотрим основные факторы, влияющие на свойства кристаллов:
1. Форма кристаллов определяется природой кристаллизуемого вещества и зависит также от наличия примесей в растворе. Например, хлористый калий из чистого водного раствора кристаллизуется в виде кубов, в присутствии мочевины – в виде кубооктаэдров. Более правильной формы, с хорошо развитыми гранями получаются кристаллы при свободном их обтекании раствором (например, при кристаллизации во взвешенном слое). Слишком большая скорость движения суспензии приводит к сглаживанию ребер кристалла и их истиранию за счет энергичных соударений и трения о стенки аппарата и насоса.
Устройство
и принцип действия
кристаллизаторов
Влияние условий кристаллизации на свойства кристаллов
Рассмотрим основные факторы, влияющие на свойства кристаллов:
1. Форма кристаллов определяется природой кристаллизуемого вещества и зависит также от наличия примесей в растворе. Например, хлористый калий из чистого водного раствора кристаллизуется в виде кубов, в присутствии мочевины – в виде кубооктаэдров. Более правильной формы, с хорошо развитыми гранями получаются кристаллы при свободном их обтекании раствором (например, при кристаллизации во взвешенном слое). Слишком большая скорость движения суспензии приводит к сглаживанию ребер кристалла и их истиранию за счет энергичных соударений и трения о стенки аппарата и насоса.
2. Размер кристаллов. Более крупные кристаллы получаются при медленном их росте и наибольших степенях пересыщения раствора. Существенное влияние на размер кристаллов оказывает перемешивание раствора. С одной стороны, интенсивное движение раствора облегчает диффузионный перенос вещества к граням кристаллов, способствуя их росту, с другой стороны, вызывает образование зародышей, т. е. накопление мелких кристаллов. Таким образом, перемешивание раствора порождает два противоположных явления. Нахождение оптимальной скорости движения раствора, определяющей желаемое соотношение между производительностью кристаллизатора и требуемыми размерами кристаллов, является одной из важнейших задач рациональной организации процесса массовой кристаллизации. Для ряда кристаллизуемых веществ эти соотношения найдены экспериментально.
На
размерах кристаллов сказывается наличие
примесей. Присутствие поверхностно-
Один из основных практических способов снижения скорости процесса и получения крупных кристаллов - введение в раствор затравочных кристаллов и вывод из зоны кристаллизации наиболее мелких фракций. При массовой кристаллизации размер товарных кристаллов различных веществ колеблется от сотых долей миллиметра до 10-12 мм.
3. Фракционный состав. Изменение гранулометрического состава, главным образом за счет уменьшения мелких фракций, достигается сужением пределов температур и концентраций раствора, а также последующей классификацией кристаллов.
4. Степень чистоты продукта. Кристаллизация - один из распространенных и наиболее эффективных методов получения веществ в чистом виде. Допустимая величина примесей определяется назначением продукта. Степень его чистоты зависит как от условий самой кристаллизации, так и от дальнейших технологических операций (фильтрование, промывка и др.). Основные загрязнения кристаллов обусловлены наличием в исходном растворе нежелательных примесей. Они могут попасть внутрь кристалла с маточным раствором в виде включений (в трещинах, дефектных полостях и др.) или адсорбироваться гранями кристалла. Изоморфные примеси могут образовывать смешанные кристаллы. Борьбу с загрязнениями кристаллов ведут механической (отстаивание, фильтрование) и химической обработкой исходного раствора, например, осаждают растворенные соли железа, сернистые соединения, хлориды и пр.
Пересыщение раствора иногда приводит к снижению растворимости примесей и их выпадению из раствора. Чем меньше размеры кристалла, тем относительно больше на его поверхности остается маточного раствора, менее чистого, чем сам кристалл. Степень чистоты кристаллов повышается при промывке. Для получения особо чистых кристаллов их подвергают перекристаллизации. Остатки влаги обычно удаляют из кристаллов путем сушки, доводя их влажность до состояния, близкого к равновесному.
Устройство кристаллизаторов. По принципу действия различают следующие типы промышленных кристаллизаторов:
1) кристаллизаторы
с удалением части
2) кристаллизаторы с охлаждением раствора;
3) вакуум-кристаллизаторы;
4) кристаллизаторы с псевдоожиженным слоем.
Кристаллизаторы с удалением части растворителя
Как
было указано, наиболее
На рисунке изображен выпарной аппарат-кристаллизатор с подвесной нагревательной камерой и двумя работающими поочередно нутч-фильтрами для отделения кристаллов от маточного раствора.
Выпарной аппарат-кристаллизатор с подвижной греющей камерой и нутч-фильтрами:
1 – корпус аппарата; 2 - нагревательная камера; З – нутч-фильтр.
Кристаллизаторы с охлаждением раствора
Простейшие кристаллизаторы периодического действия с охлаждением раствора представляют собой цилиндрические вертикальные аппараты с охлаждающими змеевиками (или рубашками) и механическими мешалками для перемешивания раствора. С целью увеличения времени пребывания раствора в установке эти аппараты часто соединяют последовательно, располагая каскадом.
Расчет кристаллизаторов.
Материальный баланс кристаллизатора:
(1)
где G0 – масса исходного раствора; Gм – масса оставшегося маточного раствора после отделения кристаллов; Gкр – масса выпавших кристаллов; Gw – масса испаренного растворителя.
Баланс по растворенному веществу:
(2)
где в0 и вм – массовая доля растворенного вещества в исходном и в маточном растворе.
Величина вм равна концентрации насыщенного раствора при температуре t0 (определяется из справочника).
При температуре кипения концентрация насыщенного раствора равна вк (определяется из справочника).
Масса испаренного растворителя равна:
(3)
Решая систему из уравнений 1 и 2, находим неизвестные величины Gкр и Gм.
По
рассчитанным величинам масс и концентраций
подбирают кристаллизатор периодического
действия.
По условию образования и роста кристаллов кристаллизаторы подразделяют на следующие основные типы:
Объемные кристаллизаторы, в свою очередь, разделяют на прямоточные (в этих аппаратах раствор и кристаллы движутся прямотоком), емкостные (в этих аппаратах с помощью мешалок происходит полное перемешивание кристаллизующейся системы) и циркуляционные (по гидродинамическому режиму они занимают промежуточное положение между прямоточными и емкостными). Циркуляционные кристаллизаторы вследствие достаточно большой их удельной производительности и высокого качества получаемы в них кристаллов находят широкое распространение в технике.
По
типу создания условий пересыщения
кристаллизаторы можно
Поверхностные кристаллизаторы
На рис.1 представлена схема устройства изогидрического поверхностного вальцового кристаллизатора, который обычно используется для кристаллизации солей с существенно снижающейся растворимостью при понижении температуры.
Рис.1. схема устройства вальцового кристаллизатора:
1-барабан;
2-корыто; 3-нож для
съема кристаллов; 4-полые
валы; 5-паровая рубашка.
Рис.2. ленточный кристаллизатор:
1,5-барабаны; 2-бункер; 3-бортик; 4-отверждаемый слой; 6-приемный бункер; 7-щетки; 8-движущая лента.
Аппарат
представляет собой горизонтальный
вращающийся барабан 1 с водяной
рубашкой, погруженный в корыто 2
с кристаллизуемым раствором. Во
избежание преждевременной
Вальцовые кристаллизаторы чаще всего применяют для кристаллизации расплавов или из растворов с небольшим содержанием маточного раствора. К недостаткам кристаллизаторов этого типа следует отнести мелкокристалличность получаемого продукта; при этом в кристаллы обычно переходят все содержащиеся в исходном расплаве примеси.
Для кристаллизации
расплавов применяют также
Образование
отвержденного слоя 4 происходит на
бесконечной ленте 8 при охлаждении
расплава, то целесообразно использовать
этот метод охлаждения). Расплав
на ленту можно подавать различным
способом: сплошным слоем, полосами и т.п.
для очистки ленты о оставшихся на ней
кристаллов (после удаления основной массы
кристаллов в бункер 6) применяют металлические
щетки 7.
Объемные кристаллизаторы
Этот тип кристаллизаторов получил наибольшее распространение в промышленности. Наиболее простым объемным кристаллизатором периодического действия является аппарат с рубашкой и мешалкой (рис.3).
Рис.3. объемный кристаллизатор периодического действия с мешалкой:
1-корпус; 2-охлаждающая рубашка; 3-мешалка.
К объемным кристаллизаторам с испарительным охлаждением относится непрерывнодействующий качающийся кристаллизатор (рис.4).
Кристаллизатор представляет собой достаточно длинное (10-15 м) открытое корыто 1 на бандажах 3, опирающихся на ролики 2. Корыто устанавливают с небольшим наклоном вдоль его продольной оси. С помощью специального привода корыто медленно качается на опорных роликах. Охлаждение раствора осуществляется за счет теплообмена с окружающей средой. Этот процесс малоинтенсивен. Медленное движение и охлаждение раствора влечет за собой снижение скорости образования зародышей, что приводит к укрупнению образующихся кристаллов. При этом кристаллы обычно имеют правильную форму, поскольку они хорошо омываются раствором. В этих аппаратах возможно скольжение кристаллов, что сопровождается продольным перемешиванием раствора, в результате чего образуется мелкокристаллический продукт. Для устранения этого явления в корыте устанавливают поперечные перегородки 4.
Большим достоинством качающегося кристаллизатора является отсутствие движущихся частей в кристаллизующемся растворе, благодаря чему возможен широкий выбор конструкционных материалов. К его недостаткам следует отнести громоздкость, низкую производительность, возможность создания тяжелых условий труда вследствие испарения раствора в производственном помещении и др.
Широкое
распространение в
Информация о работе Устройство и принцип действия кристаллизаторов