Автор работы: Пользователь скрыл имя, 23 Октября 2009 в 17:40, Не определен
Шпаргалка
10. Сродство к электрону(Eср) – энергия, которая выделяется при присоединении электрона к атому: X + e → X– . Eср выражается в кДж/моль или в эВ. Наибольшее сродство к электрону имеют галогены, кислород, сера, наименьшие (иногда отрицательное) – у металлов. Сродством к электрону называется энергетический эффект F процесса присоединения электрона к атому.
Э0 + e = Э- ± F.
В периодах сродство к электрону и окислительные свойства элементов возрастают, в группах, как правило, уменьшаются.
11. Энергия ионизации.
Энергией ионизации называется количество энергии I, необходимое для отрыва электрона от атома или иона:
Э0 + I = Э+ +e.
По периоду энергия ионизации немонотонно возрастает. Резкие максимумы соответствуют атомам благородных газов, которые обладают наиболее устойчивой электронной конфигурацией s2p6. В пределах одной группы с увеличением порядкового номера энергия ионизации обычно убывает, что связано с увеличением расстояния внешнего электронного уровня от ядра. Энергия ионизации является мерой восстановительной способности атома.
12. Электроотрицательность (ЭО). Способность атомов в соединениях притягивать к себе электроны. Возрастает по периоду, убывает по группам у элементов I, II, V, VI и VII главных подгрупп, III, IV и V – побочных подгрупп, имеет сложную зависимость у элементов III главной подгруппы (минимум у Al), возрастает с увеличением номера периода у элементов VII – VIII побочных подгрупп. Наименьшие значения s-элементы I подгруппы, наибольшие значения – p-элементы VI и VII групп.
Понятие электроотрицательности (ЭО) позволяет оценить способность атома данного элемента к оттягиванию на себя электронной плотности по сравнению с другими элементами соединения. Эта способность зависит от энергии ионизации атома и его сродства к электрону. Согласно Малликену, электроотрицательность атома может быть выражена как полусумма его энергии ионизации и сродства к электрону: ЭО = 1/2 (I + F). В периодах наблюдается общая тенденция роста величины электроотрицательности, а в группах - ее падения.
13. Радиус атома орбитальный - теоретически рассчитанное положение главного максимума плотности внешних электронных облаков. Практически приходится пользоваться эффективным. Эффективный радиус - 1/2 расстояния между ядрами атомов химически связанных элементов. В периодах атомные радиусы по мере увеличения заряда ядра, в общем, уменьшаются, так как при одинаковом числе электронных слоев возрастает заряд ядра, а следовательно, притяжение им электронов. В пределах каждой подгруппы элементов, как правило, радиусы атомов увеличиваются сверху вниз, так как возрастает число электронных уровней.
14. Химическая связь - электростатическое взаимодействие двух атомов, осуществляемое путем обмена электронами. Образование химической связи происходит за счет неспаренных электронов каждого атома. Неспаренные электроны связываются в общую пару – поделенная пара. При сближении атомов валентные электроны одного атома начинают притягиваться к ядрам другого атома и, наоборот, валентные электроны второго атома притягиваются к ядрам первого. Главный результат образования химической связи – уменьшение общей энергии системы ядер и электронов, а достигается этот результат путем совместного использования электронов разными ядрами. Электронная плотность между атомами, образующими химическую связь, увеличивается. При образовании химической связи атом стремится завершить внешний уровень и приобрести электронную конфигурацию инертного газа, отдавая или принимая электроны. В зависимости от того, как происходит обмен электронами, различают следующие виды химической связи: ковалентную (полярную и неполярную), ионную, водородную, металлическую (связь, которая образуется в результате взаимодействия относительно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов).
основные черты химической связи:
15. Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.
Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na2SO4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).
Не обладает
направленностью и
16. Ковалентная
связь - связь, осуществляемая
за счет образования общих
электронных пар,
Направленность – обуславливает пространственную структуру молекул, т.е. их геометрию (форму).
Насыщаемость – способность атомов образовывать ограниченное число ковалентных связей. Вследствие насыщаемости связей молекулы имеют определенный состав: H2, CH4, H2S, HCl.
Полярность связи характеризует степень смещения общей электронной пары к одному из атомов. Ковалентную связь, образованную одинаковыми атомами называют неполярной, а связь образованную разными атомами – полярной.
Валентный угол (угол между связями) – угол между линиями, соединяющими химически связанные атомы. Валентные углы в разных молекулах могут изменяться от 600 до 1800.
Кратность (порядок) связи – число электронных пар, участвующих в образовании связи. Для обычных ковалентных связей это число может быть равно 1,2 или 3.
17. Обменный механизм образования ковалентной связи. При сближении атомов, содержащих Неспаренные электроны, электронные оболочки атомов перекрываются между собой. При этом возникает общая пара электронов, одновременно принадлежащая обоим атомам. Каждый атом предоставляет в эту пару по одному неспаренному электрону. Пример: H. +.H → H:H или Н-Н. общую пару электронов иногда обозначают черточкой, которая и символизирует химическую связь. В образующейся молекуле Н2 каждому атому водорода принадлежат два электрона, т.е. эти атомы имеют такую же электронную конфигурацию, как и атом инертного газа гелия.
18. Валентность. Метод валентных связей.
Валентность атома – число химических связей, образованных данным атомом в соединении. Под числом химических связей подразумевают число общих пар электронов. В структурной формуле соединения, где химические связи изображены черточками, число черточек, отходящих от данного атома, равно его валентности. Пример. Атом кислорода в оксидах углерода СО и СО2 имеет валентность III и II, соответственно. Атом углерода в этих молекулах имеет валентность III и IV:
О≡С, О≡С≡О.
Понятие «валентность» применимо только к соединениям с ковалентными связями или к молекулам в газовой фазе. Валентность – это способность атомов присоединять или замещать определенное число атомов другого элемента.
Метод валентных связей.
А) химическая
связь между двумя атомами
возникает как результат
Б) атомы, вступающие в химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами (энергия притяжения атомов) вносит основной вклад в энергию химической связи. Дополнительный вклад в энергию связи дают кулоновские силы взаимодействия частиц.
В) в соответствии с принципом Паули химическая связь образуется лишь при взаимодействии электронов с разными спинами.
Г) характеристики химической связи (энергия, длина, полярность) определяются типом перекрывающихся АО.
Метод валентных связей. Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.
19. Донорно-акцепторный
механизм образования
В ионе аммония каждый из четырех атомов водорода связан с атомом общей электронной парой; три пары из четырех образованы по обменному механизму, одна – по донорно-акцепторному. Все связи H-N, образованные по двум различным механизмам, равноценны.
В качестве
доноров обычно выступают атомы
с большим количеством
20. Сигма-связь,
пи-связь, дельта-связь,
δ-связь
– ковалентная связь, образованная
при перекрывании атомных орбиталей
по линии, соединяющей ядра атомов.
π-связь
– ковалентная связь, образованная
при перекрывании атомных орбиталей
вне линии, соединяющей ядра атомов.
дельта-связь
– это
кратные
связи – это
21. Пространственная
конфигурация молекул.
Пространственная форма молекул – относительное расположение ядер атомов в пространстве.
Линейная: число электронных пар химических связей – 2; угол между связями – 1800; пример молекулы – ВеН2.;
угловая: число электронных пар химических связей – пример молекулы – Н2О;
плоская:
тригональная:
пирамидальная:
тетраэдрическая: число электронных пар химических связей – 4; угол между связями – 109,50; пример молекулы – СН4.
22. Гибридизация
атомных орбиталей. Типы
Гибридизация атомных орбиталей – изменение формы некоторых атомных орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. гибридизация осуществляется тогда, когда в образовании связей данного атома участвуют электроны разного типа.
Наиболее распространены следующие типы гибридизации:
23. Полярность
молекул. Электрический момент
диполя.
24. Водородная связь- вид химической связи типа А - Н...А'; образуется в результате взаимодействия атома водорода, связанного ковалентной связью с электроотрицательным атомом А (N, O, S и др.), и неподеленной парой электронов другого атома А' (обычно O, N). Атомы А и А' могут принадлежать как одной, так и разным молекулам. Водородная связь приводит к ассоциации одинаковых или различных молекул в комплексы; во многом определяет свойства воды и льда, молекулярных кристаллов, структуру и свойства многих синтетических полиамидов, белков, нуклеиновых кислот и др. Водородная связь - это своеобразная химическая связь. Она может быть межмолекулярной и внутримолекулярной. Межмолекулярная водородная связь возникает между молекулами, в состав которых входят водород и сильно электроотрицательный элемент - фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водорода сконцентрирован в малом объеме, то протон взаимодействует с неподеленной электронной парой другого атома или иона, обобществляя ее. В результате образуется вторая, более слабая связь, получившая название водородной. Обычно водородную связь обозначают точками и этим указывают, что она намного слабее ковалентной связи (примерно в 15-20 раз). Тем не менее, она ответственна за ассоциацию молекул. Например, образование димеров (в жидком состоянии они наиболее устойчивы) воды и уксусной кислоты можно представить схемами: