Расчет прямоточной электродиализной опреснительной установки

Автор работы: Пользователь скрыл имя, 08 Сентября 2010 в 10:32, Не определен

Описание работы

Подготовка воды для питьевого и промышленного водоснабжения принципиально отличается от других областей химической технологии: процессы водоподготовки протекают в больших объемах воды и при очень малых количествах растворенных веществ. Значит, большие расходы воды требуют устройства крупногабаритного оборудования, а малое количество извлекаемых из воды веществ неизбежно влечет за собой применение «тонких» методов обработки воды.

Файлы: 1 файл

опреснительная установка.doc

— 271.00 Кб (Скачать файл)

     Содержание 

 

Введение 

     Долгие  годы и столетия водоподготовка не выделялась как отрасль техники и еще менее – как отрасль химической технологии.

     Использовались  эмпирически найденные приемы и  способы очистки воды, главным образом, противоинфекционные. И потому история водоподготовки – это история приспособления для подготовки и очистки воды известных химических процессов и технологий, нашедших или находящих свое применение.

     Подготовка воды для питьевого и промышленного водоснабжения принципиально отличается от других областей химической технологии: процессы водоподготовки протекают в больших объемах воды и при очень малых количествах растворенных веществ. Значит, большие расходы воды требуют устройства крупногабаритного оборудования, а малое количество извлекаемых из воды веществ неизбежно влечет за собой применение «тонких» методов обработки воды.

     После обработки в системах и на станциях водоподготовки требуется вода со степенью чистоты, недоступной, да чаще всего и ненужной, для большей части химических продуктов. Например, стандартное требование – предел содержания железа в питьевой воде и питательной воде энергетических объектов, равный 0,3 мг/л, означает чистоту в 0,00003%.

     В настоящее время усиленно разрабатываются научные основы технологий обработки воды, учитывающие указанную специфику этой отрасли техники. И такая работа далека от завершения, если можно вообще говорить об окончательном познании воды.

     Было  бы громадным преувеличением утверждать, что передовые научные и конструкторские силы, лучшие машиностроительные мощности были направлены на реализацию потребностей водоподготовки. Напротив, внимание к этой отрасли и, стало быть, финансирование проявлялись в наименьшем объеме, по остаточному принципу.

     Испытания, выпавшие на долю России за последние 12–15 лет, в полной мере познала и водоподготовка.

     Обработка воды с целью подготовки ее для  питья, хозяйственных и производственных целей представляет собой комплекс физических, химических и биологических методов изменения ее первоначального состава. Все многообразие методов обработки воды можно подразделить на следующие основные группы: - улучшение органолептических свойств воды  - обеспечение эпидемиологической безопасности - изменение минерального состава   Снижение солесодержания воды до лимитов ГОСТ "Вода питьевая" или до концентрации близкой к содержанию солей в дистиллированной воде называют соответственно опреснением или обессоливанием.  Существующие методы опреснения и обессоливания воды подразделяют на две основные группы- с изменением и без изменения агрегатного состояния воды. К первой группе следует отнести дистилляцию и замораживание, ко второй - ионообмен, экстракцию, электродиализ, ультрафильтрацию и обратный осмос. Выбор метода обуславливается качеством исходной и требованиями к качеству обработанной воды, производительностью установки и технико-экономическими соображениями.  

     Опреснение  воды электродиализом основано на том, что в электрическом поле катионы  растворенных в воде солей движутся к погруженному в опресняемую воду катоду, а анионы к аноду. При этом электрический ток в растворе переносится ионами, которые разряжаются на аноде и катоде. Находящаяся в рабочем пространстве вода, опресняется, находясь между катодной и анодной камерами, разделенными перегородками. Благодаря успехам химии в производстве ионообменных материалов получены электропроводные мембраны для электродиализных аппаратов, обладающие высокой селективностью и высоким диффузионным сопротивлением. Ионитовые мембраны разделяются на катионо- и анионо-активные. Первые пропускают в электрическом поле катионы, на практически не пропускают анионов, вторые пропускают анионы, но не пропускают катионов. Данная система представляет собой классический или однонаправленный электродиализ, при котором направленность постоянного электрического поля не изменяется.  Однонаправленный электродиализ имеет ряд недостатков, характерных в той или иной степени для других мембранных процессов. Органические и неорганические коллоидные вещества, содержащиеся в воде загрязняют поверхности мембран и не могут быть удалены в процессе электродиализа. Электродиализный аппарат однонаправленной системы требует периодической остановки для очистки мембран даже при добавке комплексообразователя. При обратимом электродиализе полярность приложенного электрического поля периодически изменяется. Мембраны, используемые в обратном электродиализе являются симметричными, т.е. действуют одинаково в обоих направлениях, а концентрирующие и опресняющие отсеки идентичны с точки зрения размеров и гидравлических параметров.

 

      1 Электродиализ 

     Перераспределение и концентрирование растворенных в воде примесей осуществляется электродиализом. Сущность метода заключается в использовании направленного движения ионов под действием электрического поля. Если к электродам приложить напряжение, то находящиеся в растворе ионы придут в движение в соответствии со знаком их заряда – отрицательно заряженные (анионы) к аноду, положительные (катионы) – к катоду.

     Если  разделить электролизер на три отделения, в двух крайних разместить электроды (отделения называют электродными камерами) и пропускать электрический ток то концентрация солей в электродных камерах будет возрастать, а в среднем отделении – уменьшаться (рис.1). Для разделения камер такого электролизера-диализатора используют ионообменные мембраны, которые обладают способностью селективно пропускать ионы одного знака и препятствовать движению противоположно заряженных ионов. Перенос тока в мембране осуществляется не закрепленными в матрице ионами – противоионами. Чем больше число подвижных ионов, то есть выше обменная емкость, тем больше электропроводимость мембраны Основные электрохимические характеристики мембран – селективная проницаемость и электропроводимость, которые определяются количеством ионообменных групп в матрице и их природой1. 

Рис.1. Схема  изменения концентрации растворов  в ячейках трехкамерного аппарата для электрохимического обессоливания  воды 

     Для поддержания электрического тока в  цепи на электродах должны проходить электрохимические реакции – на катоде в основном выделение водорода, на аноде – выделение кислорода:

     2H2O + 2e- = Н2О + 2OH-

     4OH- – 4e- = O2 + 2H2O.

     В настоящее время используются многокамерные  электролизеры с большим числом пар катионо- и анионообменных мембран (рис.2). Такие установки представляют собой электролизеры, состоящие из 100–200 гидравлических камер, которые могут быть соединены последовательно или параллельно с горизонтальной или вертикальной циркуляцией воды. Селективность мембран создает условия, при которых из нечетных камер ни катионы, ни анионы не могут пройти в соседние камеры, вследствие того, что знак их заряда совпадает со знаком соответственно катионообменных и анионообменных мембран. Поэтому в четных камерах происходит процесс опреснения, а в нечетных, наоборот, концентрация солей, в результате чего в камерах образуется рассол. Обессоленная вода и концентрированный раствор отводятся по соответствующим трубопроводам. Щелочной раствор из катодной камеры и кислый раствор из анодной камеры могут отводиться самостоятельно по отдельным линиям для дальнейшего использования или же, если такой необходимости нет, подсоединяться к линии рассола.

     Рис.2. I – катод, II – анод, С – катионовые мембраны, А – анионовые мембраны, 1 – присоединение к отрицательному полюсу выпрямителя, 2 – выход газообразного водорода, 3 – подача воды на промывку катодной камеры, 4 – подача солоноватой воды в рассольные камеры, 5 – то же, в опреснительные камеры, 6 – подача воды на промывку анодной камеры, 7 – выход газообразных кислорода и хлора, 8-8присоединение к положительному полюсу выпрямителя, 9 – отвод опреснительной воды, 10 – отвод концентрированного рассола 

     В электродиализаторах применяются  химически стойкие электроды  из платинированного титана, ОРТА, реже – из нержавеющей стали или графита.

       

         1.1 Методы организации процесса 

     Организация процесса электродиализа: он может  быть однонаправленным (классическим) или обратимым.

     При однонаправленной схеме полярность приложенного постоянного напряжения и назначение камер (опресняющих и концентрирующих) остаются неизменными. Недостаток такой схемы – загрязнение поверхности мембран минеральными и неминеральными веществами, содержащимися в воде (соли жесткости, органические и неорганические коллоиды, микробиологические организмы и т.д.).

     При обратимом процессе происходит периодическое  изменение полярности приложенного напряжения. Отсек, который вначале  был опресняющим, при изменении  направления тока становится концентрирующим, и наоборот. Так осуществляется очистка мембран от загрязнений.

     Особенность обратимого электродиализа – использование  симметричных мембран, то есть они работают одинаково в обоих направлениях, и системы ОЭД имеют симметричную конфигурацию.

     Недостаток  метода – необходимость предварительной  очистки вод от взвешенных и коллоидных частиц, которые могут засорять ионитные мембраны. 
 

     1.2 Технологические особенности мембран и аппаратов 

     Показатели  работы электродиализных установок  определяются в первую очередь характеристиками мембран.

     Через идеальную катионообменную мембрану осуществляется перенос только катионов, через анионообменную – только анионов. В реальных условиях мембраны не обладают идеальной селективностью и частично переносят ионы обоих зарядов.

     Кроме селективности, ионнообменная мембрана должна обладать общими свойствами: высокой электропроводимостью, химической и механической стойкостью в окислительных средах, стабильностью характеристик, большим сроком службы.

     Кроме того, ионообменная мембрана должна максимально  ограничивать транспорт гидратной  воды (перенос молекул воды совместно с ионом, обычно в виде гидратной оболочки последнего).

     Толщина мембран должна быть минимальной, чтобы наименьшим было сопротивление электротоку. Но в то же время толщина должна быть достаточной для механической прочности мембраны в связи с неравномерным распределением гидравлического давления в камерах деминерализации и концентрирования.

     По  функциональному назначению мембраны могут быть катионообменными, анионообменными  и биполярными. По составу полимерной пленки – гомогенными и гетерогенными.

     Гетерогенные  мембраны получают прессованием тонкоизмельченной  смолы и инертного связующего. Такими пластичными связующими материалами  могут быть полиэтилен, полистирол, полиизобутилен, каучуки. Химическая стойкость мембран возрастает при использовании в качестве связующего материала фторолефинов. В гетерогенных мембранах, выпускаемых нашей промышленностью, в качестве связующего используется полиэтилен.

     Гомогенные  мембраны изготовляют из одной ионообменной смолы. Такие мембраны обладают высокими электрохимическими характеристиками, хотя механически они недостаточно прочны.

     Наиболее  перспективными считаются гомогенные мембраны. Их получают полимеризацией или сополимеризацией ненасыщенных соединений, одно из которых содержит готовые ионогенные группы или такие функциональные группы, которые легко переводятся в ионогенные (амидные, эфирные).

     Плотность тока в электродиализаторах – 0,2–1,0 А/дм2. Чем больше плотность тока, тем больше затраты электроэнергии. При резком увеличении плотности тока может начаться перегрев и даже прожог мембран – допускаемая температура нагрева не более 60°С.

     Расход  электроэнергии при оптимально организованной технологии и минерализации исходной воды не менее 1 г/л составляет примерно 1 Вт/л.

     При уменьшении минерализации воды, особенно менее 0,5 г/л, затраты электроэнергии на преодоление электрического сопротивления воды становятся значительными, и следует оценивать технологию по экономическим критериям.

     Напряжение  на электродиализаторе (в зависимости  от количества камер, степени минерализации  исходной и деминерализованной воды) может колебаться в пределах от 300 до 1000 В.

     Очень важное свойство ионообменных мембран  – склонность к набуханию, которая  связана с гидратацией фиксированных ионообменных групп и противоионов. Чем больше обменная емкость и способность к гидратации ионов всех видов, тем больше набухание мембран. Не набухающие мембраны проводят ток в незначительной степени, а при набухании молекулы воды вызывают диссоциацию ионогенных групп, и противоионы вместе с вошедшим в мембрану электролитом начинают переносить ток2.

Информация о работе Расчет прямоточной электродиализной опреснительной установки