Процессы первичной переработки нефти

Автор работы: Пользователь скрыл имя, 18 Марта 2011 в 14:06, доклад

Описание работы

Нефть представляет собой смесь тысяч различных веществ. Полный состав нефтей даже сегодня, когда имеются в наличии самые изощренные средства анализа и контроля: хроматография, ядерно-магнитного резонанса, электронных микроскопов - далеко не все эти вещества полностью определены. Но, несмотря на то, что в состав нефти входят практически все химические элементы таблицы Д.И. Менделеева, её основа всё-таки органическая и состоит из смеси углеводородов различных групп, отличающихся друг от друга своими химическими и физическими свойствами. Независимо от сложности и состава, переработка нефти начинается с первичной перегонки. Обычно перегонку проводят в два этапа - с небольшим избыточным давлением, близким к атмосферному и под вакуумом, при этом используя для подогрева сырья трубчатые печи. Поэтому, установки первичной переработки нефти носят названия АВТ - атмосферно-вакуумные трубчатки.

Файлы: 1 файл

перегонка нефти.docx

— 137.94 Кб (Скачать файл)

Рассмотрим обобщенные сведения по теоретическим основам  процесса ректификации.

В ректификационных колоннах контактирование потоков пара и жидкости может производится непрерывно (в насадочных колоннах) или ступенчато (в тарельчатых ректификационных колоннах) [20].

В результате каждого  контакта компоненты перераспределяются между фазами: пар обогащается  низкокипящим, а жидкость – высококипящим компонентом. При длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, т. е. температуры потоков станут одинаковыми. В этом случае составы компонентов будут связаны уравнениями равновесия (при этом достигается фазовое равновесие) такой контакт в состоянии фазового равновесия принято называть равновесной ступенью или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса (температурный режим, давление, соотношение потоков, флегмовое число и др.), можно обеспечить требуемую четкость разделения нефтяных смесей.

Место ввода  в ректификационную колонну нагретого  перегоняемого сырья называют питательной  секцией (зоной), где осуществляется однократное испарение. Часть колонны, расположенная выше питательной  секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока – отгонной, или исчерпывающей секцией.

Различают простые  и сложные колонны.

Простые колонны – разделение исходной смеси (сырья) на два продукта. Ректификат (дистиллят) – выводится с верха колонны в парообразном состоянии, и остаток – нижний жидкий продукт ректификации.

Сложные колонны  разделяют исходную смесь больше чем на два продукта: 1-ая – ректификационная колонна с отбором дополнительной фракции непосредственно из колонны в виде боковых погонов; 2-ая – ректификационная колонна, у которой дополнительные продукты отбираются из специальных отпарных колонн (стриппингов).

Для разделения многокомпонентных смесей на более  чем два компонента (фракции) может  использоваться одна сложная колонна  либо система простых и сложных  колонн, соединенных между собой  в определенной последовательности прямыми или обратными паровыми или жидкими потоками. Если не предъявляются  сверхвысокие требования к чистоте  продукта, используют одну простую  колонну для этих целей. Выбор  конкретной схемы и рабочих параметров процесса перегонки определяется технико-экономическими и технологическими расчетами с  учетом требований по ассортименту и  четкости разделения.

Четкость  погоноразделения. В нефтепереработке, например, в качестве достаточно высокой разделительной способности колонны перегонки нефти на топливные фракции считается налегание температур кипения соседних фракций в пределах 10–30 ºС (косвенный показатель четкости (чистоты) разделения). На разделительную способность ректификационных колонн влияют число тарелок (или высота насадки), флегмовое и паровое число.

Флегмовое число (R) – соотношение жидкого и парового потоков в концентрационной части колонны (LD; L и – количество флегмы и ректификата).

Паровое число (П) – отношение контактируемых потоков пара и жидкости в отгонной секции колонны (П = G/W; G и  W – количество соответственно паров и кубового остатка).

Число тарелок (N) колонны (или высота насадки) определяется числом Т.Т. (NТ), обеспечивающим заданную четкость разделения при принятом флегмовом (или паровом) числе, а также эффективностью контактных устройств (обычно КПД реальных тарелок или удельная высота насадки, соответствующая одной Т.Т.). Зависимость числа Т.Т. от флегмового числа колонны можно выразить в виде графика на рис. 4.1.

 
Рисунок 4.1. Зависимость числа теоретических  тарелок от флегмового числа

Из графика  следует, что граничные пределы  нормальной работы ректификационных колонн, т. е. заданная четкость разделения смеси может быть достигнута лишь при одновременном выполнении ограничений по флегмовому числу и числу теоретических тарелок.

Любая точка  на кривой может быть выбрана как  рабочая. Это означает, что заданная четкость разделения смеси может  быть достигнута бесконечным множеством пар чисел NT и R. Как видно из рисунка 4.1, флегмовое число (R) (а значит и количество орошения в колонне) изменяется от минимального значения до бесконечно большой величины. При этом необходимое для обеспечения заданной четкости разделения теоретическое число тарелок (NT) будет изменяться соответственно от бесконечно большой величины до некоторой минимальной. Но при увеличении количества орошения будут увеличиваться эксплуатационные затраты (расход энергии на перекачку тепла в кипятильнике и холода в конденсаторах). Из опыта эксплуатации ректификационных колонн установлено – оптимальное значение R, соответствующее минимуму общих затрат на ректификацию не намного превышает min необходимое: Rmin Rопт = β  Rmin (β – коэффициент избытка флегмы ~1,0–1,3). Фактическое число тарелок Nф определяется аналитическим расчетом (на ЭВМ с использованием уравнения равновесия фаз, материального и теплового балансов потоков), либо из опытных данных с учетом эффективного КПД тарелки :

Nф NηT.

В зависимости  от конструкции и места расположения в колонне ηT изменяется в пределах 0,3–0,9.

На технико-экономические  показатели и четкость погоноразделения ректификационной колонны, кроме разделительной способности, значительно влияют физико-химические свойства (плотность, молярная масса, температура кипения, летучесть и т. п.), компонентный состав и др.

В наиболее обобщенной форме разделительные свойства перегоняемого  сырья принято выражать коэффициентом  относительной летучести (аналог коэффициента селективности в процессах экстракции).

Коэффициент относительной  летучести α = KK2

K1 и K– константы фазового равновесия соответственно низко- и высококипящего компонентов (фракций), т.к. KK2, то α > 1.

α – отношение летучестей компонентов перегоняемого сырья при одинаковых температурах и давлениях. Коэффициент относительной летучести α косвенно характеризует движущую силу процесса перегонки применительно к разделяемому сырью. Сырье, у которого α >> 1 значительно легче разделить на компоненты, чем при его значении близком к 1.

Относительная летучесть зависит от давления и  температуры, при которых находятся  компоненты, с увеличением давления и температуры величина α снижается. Вблизи критической области значений коэффициента α приближается к единице.

4.1.1. Особенности  нефти как сырья процессов  перегонки

  • Невысокая термическая стабильность нефти, ее высококипящих фракций (≈350–360 ºС), необходимо ограничение температуры нагрева (для повышения относительной летучести - перегонка под вакуумом, перегонка с водяным паром – для отпаривания более легких фракций). Необходимо как минимум две стадии: атмосферная перегонка до мазута (до 350 ºС) и перегонка под вакуумом.
  • Нефть – многокомпонентное сырье с непрерывным характером распределения фракционного состава с соответственно летучести компонентов. Коэффициенты относительной летучести непрерывно (экспоненциально) убывают по мере утяжеления фракций и по мере сужения температурного интервала кипения фракций. Поэтому в нефтепереработке отбирают широкие фракции: бензин н.к. – 140 ºС (180 ºС); керосиновые – 140 (180) –240; дизельные – 240–350 ºС; вакуумный газойль – 350–400 ºС, 400–450 ºС и 450–500 ºC; гудрон >490 ºС (>500 ºС). Иногда ограничиваются неглубокой перегонкой нефти с получением в остатке мазута >350 ºС (котельное топливо).
  • Высококипящие и остаточные фракции нефти содержат значительное количество гетероорганических смолисто-асфальтеновых соединений и металлов (ухудшают товарные характеристики продуктов и усложняют дальнейшую переработку дистиллятов).

Необходима организация  четкой сепарации фаз в секции питания атмосферной и особенно вакуумной колонн. Для увеличения разделительной способности нижних тарелок сепарационной секции колонны  необходим избыток орошения (называемый избытком однократного испарения), который  достигается путем незначительного  перегрева сырья (не выше предельно  допустимой величины). Доля отгона при  однократном испарении в секции питания колонны должна быть на 2–5 % больше выхода продуктов, отбираемых в виде дистиллята и боковых погонов.

4.1.2. Способы  регулирования температурного режима  ректификационных колонн.

Регулирование теплового режима – отвод тепла  в концентрационной (укрепляющей) зоне, подвод тепла в отгонной (исчерпывающей) секции колонн и нагрев сырья до оптимальной температуры.

Отвод тепла  осуществляется путем:

а) использования  парциального конденсатора (кожухотрубчатый теплообменный аппарат; применяется в малотоннажных установках, трудность монтажа);

б) организация  испаряющегося (холодного) орошения (наиболее распространена в нефтепереработке);

в) организация  неиспаряющегося (циркуляционного) орошения, используется широко и не только для  регулирования температуры наверху, но и в средних сечениях сложных  колонн. На современных установках перегонки нефти применяются  комбинированные схемы орошения.

Подвод тепла  в отгонной секции:

г) Нагрев остатка  ректификации в кипятильнике с паровым  пространством (осуществляется дополнительный подогрев кубового продукта в выносном кипятильнике с паровым пространством (рибойлере), где он частично испаряется). Образовавшиеся пары возвращаются под нижнюю тарелку колонны. Особенность этого способа - наличие в кипятильнике постоянного уровня жидкости и парового пространства над этой жидкостью. По своему разделительскому действию кипятильник эквивалентен одной Т.Т. Этот способ широко применяется на установках фракционирования попутных нефтяных и нефтезаводских газов, при стабилизации и отбензинивании нефти, стабилизации бензинов прямой перегонки и вторичных процессов нефтепереработки.

д) Циркуляция части остатка, нагретого в трубчатой печи. В этом случае часть кубового продукта перекачивается через трубчатую печь и подогретая парожидкостная смесь (горячая струя) вновь поступает вниз колонны. Этот способ используют если необходимо обеспечить высокую температуру низа колонны, когда применение обычных теплоносителей (водяной пар и др.) невозможно или нецелесообразно.

Способы регулирования  температуры в ректификационной колонне представлены на рис. 4.2.

 
а
 
б
 
в
 
г
 
д

Рисунок 4.2. Регулирование  температурного режима по высоте колонны: 
а, б, в - отвод тепла в концентрационной зоне; 
г, д - подвод тепла в отгонной секции.

Использование одного острого орошения в ректификационных колоннах неэкономично, т.к. не обеспечивается оптимальное распределение флегмового числа по высоте колонны.

4.1.3. Выбор давления  и температурного режима в  ректификационной колонне

На экономические  показатели перегонки значительное влияние оказывает давление и  температурный режим при принятых значениях флегмового числа, числа и типа тарелок. Такие параметры как давление и температура тесно взаимосвязаны: нельзя оптимизировать один из них без учета другого.

При оптимизации  технологических параметров колонны  ректификации целесообразно выбрать  такие значения давления и температуры, которые:

  • обеспечивают состояние системы, далекое от критического (должны быть высокие значения коэффициента относительной летучести α).
  • исключают возможность термической деструкции сырья и продуктов перегонки или кристаллизации их в аппаратах.
  • позволяют использовать дешевые и доступные хладоагенты для конденсации паров ректификата (вода, воздух) и теплоносители для нагрева и испарения кубовой жидкости (водяной пар высокого давления); кроме того, снижать требуемые поверхности холодильников, конденсаторов, кипятильников, теплообменников.
  • обеспечивают нормальную работу аппаратов и процессов, связанных с колонной ректификации материальными и тепловыми потоками.
  • обеспечивают оптимальный уровень по удельной производительности, капитальным и эксплуатационным затратам.

Повышение или  понижение давления в ректификационной колонне сопровождается соответствующим  повышением или понижением температуры. Например, для получения в качестве ректификата пропана требуемая  температура верха колонны при  давлении 0,1 и 1,8 МПа будет соответственно минус 42 ºC и плюс 55 ºС (второй вариант: 1,8 МПа и +55 ºС, более предпочтителен, т. к. повышение давления позволяет использовать воду для конденсации паров пропана, а не специальные хладагенты и дорогостоящие низкотемпературные системы охлаждения). Перегонка, например, под вакуумом позволяет осуществить отбор фракций нефти без заметного разложения, выкипающих при температурах, повышающих температуру нагрева сырья больше чем на 100–150 ºС.

Информация о работе Процессы первичной переработки нефти