Обмен липидов

Автор работы: Пользователь скрыл имя, 28 Января 2013 в 20:13, реферат

Описание работы

Жиры и другие липиды (фосфатиды, стерины, цереброзиды и др.) объединены в одну группу по физико-химическим свойствам: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол и др.). Эта группа веществ важна для пластического и энергетического обмена. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран и в значительной мере определяют их свойства. Велика энергетическая роль жиров. Их теплотворная способность более чем в два раза превышает таковую углеводов или белков.

Файлы: 1 файл

Обмен липидов.doc

— 47.00 Кб (Скачать файл)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ  ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

«ВОЛГОГРАДСКАЯ АКАДЕМИЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ»

 

 

 

 

 

 

 

 

        КАФЕДРА  БИОХИМИИ

 

 

 

 

РЕФЕРАТ НА ТЕМУ: ОБМЕН ЛИПИДОВ

 

 

 

  

 

 

 

 

 

 

 

 

 

 

                                                                                             Выполнила: Шельменкова Я.А.

                                                                                студентка II курса ФЗО

                                                                                группы 21 Фкб

 

 

 

 

 

 

 

 

                                                                                                                                                           Волгоград 2013

 

Обмен липидов

 

 

Жиры и другие липиды (фосфатиды, стерины, цереброзиды и др.) объединены в одну группу по физико-химическим свойствам: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол и др.). Эта группа веществ важна для пластического и энергетического обмена. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран и в значительной мере определяют их свойства. Велика энергетическая роль жиров. Их теплотворная способность более чем в два раза превышает таковую углеводов или белков.

Жиры организма животных являются триглицеридами олеиновой, пальмитиновой, стеариновой, а также некоторых  других высших жирных кислот.

Большая часть жиров в организме  находится в жировой ткани, меньшая  часть входит в состав клеточных  структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и микрохимическом исследованиях. Жировые капельки в клетках — это запасной жир, используемый для энергетических потребностей. Больше всего запасного жира содержится в жировой ткани, которой особенно много в подкожной основе (клетчатке), вокруг некоторых внутренних органов, например почек (в околопочечной клетчатке), а также в некоторых органах, например в печени и мышцах.

Общее количество жира в организме  человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать даже 50%.

Количество запасного жира зависит  от характера питания, количества пищи, конституциональных особенностей, а  также от величины расхода энергии  при мышечной деятельности, пола, возраста и т. д.; количество же протоплазматического жира является устойчивым и постоянным.

Образование и распад жиров в  организме. Жир, всасывающийся из кишечника, поступает преимущественно в  лимфу и в меньшем количестве — непосредственно в кровь.

Опытами с дачей животному меченых  жиров, содержащих изотопы углерода и водорода, показано, что жиры, всосавшиеся в кишечнике, поступают непосредственно в жировую ткань, которая имеет значение жирового депо организма. Находящиеся здесь жиры могут переходить в кровь и, поступая в ткани, подвергаются там окислению, т. е. используются как энергетический материал.

Жиры разных животных, как и жиры различных органов, различаются  по химическому составу и физико-химическим свойствам (имеются различия точек  плавления, консистенции, омыляемости, йодного числа и др.).

У животных определенного вида состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле животных и человека жир все же откладывается в депо. При этом он имеет видовые особенности данного животного, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

В случае длительного и обильного  питания каким-либо одним видом  жира может измениться состав жира, откладывающегося в организме. Это  показано в опытах на собаках, которые  после длительного голодания потеряли почти весь запасной жир тела. Одни животные после этого получали с пищей льняное масло, а другие — баранье сало. Через 3 нед. масса животных восстановилась, и они были забиты. В теле каждого из них обнаружено отложение около 1 кг жира, который у первых был жидким, не застывал при О °С и походил на льняное масло, а у вторых оказался твердым, имел точку плавления + 50 °С и был похож на баранье сало.

Аналогично влияние пищевого жира и на свойства жира человека. Имеются  наблюдения, что у полинезийцев, употребляющих в большом количестве кокосовое масло, свойства жира подкожного слоя могут приближаться к свойствам масла кокосовых орехов, а у людей, питающихся тюленьим мясом, — к свойствам тюленьего жира.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Доказательства этого дает сельскохозяйственная практика откорма животных.

Некоторые ненасыщенные жирные кислоты (с числом двойных  связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот, т. е. являются незаменимыми. Вместе с тем они необходимы для нормальной жизнедеятельности. Это обстоятельство, а также то, что с жирами поступают некоторые растворимые в них витамины, является причиной тяжелых патологических нарушений, которые могут наступить при длительном (многомесячном) исключении жиров из пищи.

Регуляция обмена жиров. Процесс образования, отложения  и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами  и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэстерифицнрованных жирных кислот, служащих источником энергии.

Ряд гормонов оказывает выраженное влияние на жировой обмен. Сильным жиромобилизирующим действием обладают гормоны мозгового слоя надпочечников — адреналин и норадреналин, поэтому длительная адреналинемия сопровождается уменьшением жирового депо. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы, поэтому гиперфункция щитовидной железы сопровождается похуданием.

Наоборот, тормозят мобилизацию  жира глюкокортикоиды — гормоны  коркового слоя надпочечника, вероятно, вследствие того, что они несколько  повышают уровень глюкозы в крови.

Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, наоборот, способствуют отложению жира. Показано, в частности, что после перерезки чревного нерва с одной стороны у голодающей кошки к концу периода голодания на денервированной стороне в околопочечной клетчатке сохраняется значительно больше жира, чем на контрольной (не денервированной).

Нервные влияния на жировой  обмен контролируются гипоталамусом. При разрушении вентромедиальных ядер гипоталамуса развиваются длительное повышение аппетита и усиленное отложение жира. Раздражение вентромедиальных ядер, напротив, ведет к потере аппетита и исхуданию.

Обмен фосфатидов и стеринов. Пищевые продукты, богатые липидами, обычно содержат некоторое количество фосфатидов и стеринов. Физиологическое значение этих веществ очень велико: они входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы.

Фосфатидами особенно богата нервная ткань. Фосфатиды синтезируются в стенке кишечника и в печени (в крови печеночной вены обнаружено повышенное содержание фосфатидов). Печень является депо некоторых фосфатидов (лецитина), содержание которых в печени особенно велико после приема пищи, богатой жирами.

Исключительно важное физиологическое  значение имеют стерины, в частности  холестерин. Это вещество входит в  состав клеточных мембран, является источником образования желчных  кислот, а также гормонов коры надпочечников  и половых желез, витамина D. Вместе с тем холестерину отводится ведущая роль в развитии атеросклероза. Содержание холестерина в плазме крови человека имеет возрастную динамику: у новорожденных концентрация холестерина 65—70 мг/100 мл, к возрасту 1 год она увеличивается и составляет 150 мг/100 мл. Далее происходит постепенное, но неуклонное повышение концентрации холестерина в плазме крови, которое обычно продолжается у мужчин до 50 лет и у женщин до 60—65 лет. В экономически развитых странах у мужчин 40—60 лет концентрация холестерина в плазме крови составляет 205—220 мг/100 мл, а у женщин 195—235 мг/100 мл. Содержание холестерина у взрослых людей выше 270 мг/100 мл расценивается как гиперхолестеринемия, а ниже 150 мг/100 мл — как гипохолестеринемия.

В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется транспорт холестерина. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% -в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Характерно, что у животных, устойчивых к развитию атеросклероза, большая   часть холестерина плазмы крови находится в составе ЛПВП. Наоборот, наследственная (семейная) гиперхолестеринемия характеризуется высоким уровнем ЛПНП и высоким содержанием холестерина в плазме крови. Таким образом, липопротеиды определяют уровень холестерина и динамику его обмена. Некоторые стерины пищи, например витамин D, обладает большой физиологической активностью.

 

Список литературы

1. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003.


Информация о работе Обмен липидов