Нуклеиновые кислоты

Автор работы: Пользователь скрыл имя, 13 Декабря 2010 в 18:23, реферат

Описание работы

Нуклеиновые кислоты, биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому.

Файлы: 1 файл

Нуклеиновые кислоты.doc

— 152.00 Кб (Скачать файл)

В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена – участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул.

Репликация нуклеиновых  кислот осуществляется благодаря образованию  водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что  прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через «адапторные» нуклеиновые кислоты – небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК.

Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом:

Последовательность  оснований в ДНК задает порядок  следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, – только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза (см. также рисунок).

1. Ферменты, называемые  аминоацил-тРНК-синтетазами, присоединяют  аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты.

2. Молекула мРНК  присоединяется своим первым  кодоном к небольшой частице,  называемой рибосомой. Рибосомы  состоят из примерно равных  количеств рРНК и белка. Структура  и функция рибосом весьма сложны, но главная их задача – облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК.

3. тРНК, нагруженная  аминокислотой, связывается с  соответствующим кодоном мРНК, которая,  в свою очередь, контактирует  с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота.

4. мРНК, подобно  ленте на конвейере, продвигается  по рибосоме на один кодон  вперед.

5. Следующая  тРНК, нагруженная аминокислотой,  присоединяется ко второму кодону.

6. Первая и  вторая аминокислоты связываются между собой.

7. Первая тРНК  отсоединяется от комплекса, и  теперь вторая тРНК несет две  аминокислоты, связанные между собой. 

8. мРНК снова  продвигается на один кодон  вперед, и все события повторяются,  а растущая аминокислотная цепь  удлиняется на одну аминокислоту. Процесс продолжается, пока не будет достигнут последний, «стоп»-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100–200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты.

Генетический  код. Итак, каждая аминокислота в белке  опосредованно детерминируется  определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых  кислотах имеется четыре 4 = 64.´4´вида оснований, число возможных кодонов составляет 4 Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов – от вирусов до человека. Одно из таких исключений составляют изменения в  это-генетическом коде, используемом митохондриями. Митохондрии  небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.

Аланин Аргинин Аспарагин Аспарагиновая кислота
ГЦУ ЦГУ ГАУ ААУ
ГЦЦ ЦГЦ ГАЦ ААЦ
ГЦА ЦГА    
ГЦГ ЦГГ    
  АГА    
  АГГ    
Валин Гистидин Глицин Глутаминовая  кислота
ГУУ ЦАУ ГГУ ЦАА
ГУЦ ЦАЦ ГГЦ ЦАГ
ГУА   ГГА  
ГУГ   ГГГ  
Глутамин Изолейцин Лейцин Лизин
ГАА АУУ УУА ААА
ГАГ АУЦ УУГ ААГ
  АУА ЦУУ  
    ЦУЦ  
    ЦУА  
    ЦУГ  
Метионин Пролин Серин Тирозин
АУГ ЦЦУ АГУ УАУ
  ЦЦЦ АГЦ УАЦ
  ЦЦА УЦА  
  ЦЦГ УЦГ  
    УЦУ  
    УЦЦ  
Треонин Триптофан Фенилаланин Цистеин Нет
АЦУ УГГ УУУ УГУ УАА
АЦЦ   УУЦ УГЦ УАГ
АЦА       УГА
АЦГ        
ГЕНЕТИЧЕСКИЙ  СЛОВАРЬ: указаны аминокислоты, встречающиеся  в белках, и соответствующие им кодоны в мРНК. «Буквы» в кодонах  записаны в  3' . В этом же направлении  идут транскрипции®направлении 5'  нуклеиновых кислот и синтез белка на матрице. «Нет» означает, что кодон не кодирует никаких аминокислот; такие кодоны называются «бессмысленными». Генетический словарь одинаков для всех живых организмов – от вирусов до человека.        

Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трех случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота  может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ.- глицин - Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания – пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и  ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют-ЦАЦ, а глутамин  никаких аминокислот и называются «бессмысленными».

Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец  цистрона, а также граница раздела  между ними помечаются с помощью  своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими «бессмысленными» кодонами.

У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и «молчащих» генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты – неясно; возможно, они выполняют регуляторные функции.

У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью.

Транспортные  РНК и супрессия. Смысл информации, содержащейся в ДНК, если переводить ее на язык аминокислот, определяется как самой ДНК, так и считывающим  механизмом, т.е. зависит не только от того, какие кодоны есть в ДНК  и в какой последовательности они расположены, но также и от того, какие именно аминокислоты (и к каким тРНК) присоединяют аминоацил-тРНК-синтетазы. Конечно, природа синтетаз и тРНК тоже определяется ДНК, и в этом смысле ДНК является первичным детерминантом белковой последовательности. Тем не менее суммарная детерминация представляет собой функцию всей системы, поскольку результат зависит от исходных компонентов. Если бы соответствие между тРНК и аминокислотами было другим, смысл кодонов тоже изменился бы.

Известно, что  мутации в ДНК изменяют считывающий механизм и в результате меняют – пусть и незначительно – смысл кодонов. Так, в бактерии Escherichia coli глициновая тРНК обычно узнает в мРНК кодон ГГА; мутация в ДНК, с которой транскрибируется эта тРНК, изменяет антикодон глициновой тРНК таким образом, что теперь он узнает кодон АГА, соответствующий аргинину, и в белковой молекуле вместо аргинина появляется глицин. Это не обязательно имеет фатальные последствия, поскольку не все аргинины кодируются триплетом АГА и есть аргининовые тРНК, по-прежнему узнающие «свои» АГА. В результате измененными оказываются не все белковые молекулы. Иногда такие мутации, изменяющие антикодон, подавляют (супрессируют) мутации в кодоне. Например, если в результате мутации глициновый кодон ГГА превращается в АГА, он все же может прочитываться как глицин, если антикодон глициновой тРНК, в свою очередь, изменился так, что эта тРНК стала узнавать АГА. В этом случае вторая «ошибка» устраняет первую.

Мутации, приводящие к изменению антикодонов, могут  иметь разные последствия, поскольку один и тот же кодон может узнаваться несколькими тРНК. Вообще говоря, узнавание осуществляется благодаря комплементарности оснований кодона и антикодона, однако одно из оснований кодона может модифицироваться таким образом, что антикодон будет узнавать даже неполностью комплементарный кодон. В результате одна и та же тРНК может взаимодействовать с несколькими разными кодонами, кодирующими одну и ту же аминокислоту. Этот феномен неполного соответствия кодона и антикодона был назван Ф.Криком «шатанием».

Регуляция активности генов. Для организма было бы катастрофой, если бы во всех его клетках одновременно работали все гены и синтезировались  все закодированные ими белки. Бактерии, например, должны все время приспосабливаться  к условиям среды, синтезируя нужные ферменты. Все клетки высших организмов имеют один и тот же набор генов, но, к счастью, клетки мозга не продуцируют пищеварительные ферменты, а в хрусталике глаза не синтезируются мышечные белки.

Активность гена характеризуется тем, транскрибируется ли он с образованием соответствующей  длинная молекула, и в определенных ее участках имеются-мРНК. ДНК  последовательности, называемые промоторами, которые распознаются специфическим  полимеразой. В этих участках и только в них-транскрибирующим ферментом  начинается транскрипция, продолжаясь до тех пор, пока не достигнет последовательности оснований, означающей конец считывания.

Существуют особые репрессорные белки, которые связываются  с ДНК поблизости от промотора  в участке, называемом оператором. Образовавшийся комплекс блокирует транскрипцию, и мРНК не синтезируется. Таким образом, репрессорные белки являются ингибиторами транскрипции. С другой стороны, существуют небольшие молекулы, которые образуют комплекс с репрессорами и снимают их блокирующее действие на транскрипцию. Иными словами, они ингибируют ингибиторы. Так, у бактерий в норме отсутствуют ферменты, катализирующие расщепление некоторых сахаров; однако если один из этих сахаров появляется в среде, он образует комплекс с репрессором, ингибирование снимается и запускается синтез соответствующего фермента. Ферменты, синтез которых индуцируется собственными субстратами, называются индуцибельными. В ряде случаев, наоборот, репрессорный белок не блокирует транскрипцию мРНК, если он не связан с определенной молекулой. У бактерий некоторые ферменты, участвующие в синтезе определенных аминокислот, образуются только в отсутствие этих аминокислот, т.е. бактерии производят данные ферменты лишь по мере надобности. Если добавить в среду соответствующую аминокислоту, она образует комплекс с репрессором и активирует его, а тем самым ингибирует транскрипцию соответствующих генов. Уже образовавшаяся мРНК вскоре расщепляется, и синтез ферментов останавливается. Такие ферменты являются отрицально индуцибельными.

Поскольку репрессорные белки сами кодируются генами, работа которых, в свою очередь, может регулироваться другими генами, а синтез малых  молекул-индукторов и гормонов также  в конечном счете регулируется генами, механизмы регуляции генной активности могут быть очень сложными.

Список  литературы

Ичас М. Биологический  код. М., 1971

Шабарова З.А., Богданов А.А. Химия нуклеиновых  кислот и их компонентов, М., 1978

Зенгер В. Принципы структурной организации нуклеиновых  кислот. М., 1987

Информация о работе Нуклеиновые кислоты