Контрольная работа по "Химия"

Автор работы: Пользователь скрыл имя, 05 Сентября 2017 в 15:36, контрольная работа

Описание работы

Дайте определение основных характеристик кристаллической решетки (КР): параметр, координационное число, плотность упаковки, базис. Приведите схему КР бериллия и укажите его основные характеристики.

Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных местах в кристалле. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки.

Файлы: 1 файл

В-1.docx

— 222.00 Кб (Скачать файл)
  1. Дайте определение основных характеристик кристаллической решетки (КР): параметр, координационное число, плотность упаковки, базис. Приведите схему КР бериллия и укажите его основные характеристики.

 

Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных местах в кристалле. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки.

  Параметр решетки - это расстояние между атомами по ребру элементарной ячейки. Параметры решетки измеряется в нанометрах (1 нм=10-9 м = 10 Å).  Параметры кубических решеток характеризуются длиной ребра куба и обозначаются буквой а.

Строение и свойства кристаллических решеток характеризуется следующими параметрами:

Период (параметр) решетки – расстояние по ребру элементарной ячейки между центрами соседних атомов, находящихся в кристаллической решетки. Обозначается: a, b, c; измеряется в ангстремах (1=10-10 м =0,1нм). В кубической системе период равен от 2 до 7 ,     (в некоторой литературе период для большинства металлов – от 0,1  до 0,7 нм).   

Координационное число К – показывает сколько атомов находится на наиболее близком и равном расстоянии от данного атома. Чем больше К, тем больше плотность упаковки.

Базис решетки  – количество атомов, принадлежащих данной элементарной ячейке, характеризует плотность решетки.

Коэффициент компактности (плотность упаковки) – отношение объема, занимаемого атомами ко всему объему решетки. Также характеризует плотность решетки.

Бериллий — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость.

Кристаллическая решетка Бериллия гексагональная плотноупакованная с периодами а=2,855Å и с = 3,5840Å. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), tпл 1285°С, tкип 2470°С.

Бериллий обладает наиболее высокой из всех металлов теплоемкостью, 1,80 кДж/(кг·К) или 0,43 ккал/(кг·°С), высокой теплопроводностью, 178 Вт/(м·К) или 0,45 кал/(см·сек·°С) при 50°С, низким электросопротивлением, 3,6-4,5 мком·см при 20°С; коэффициент линейного расширения 10,3-131 (25-100°С). Эти свойства зависят от качества и структуры металла и заметно меняются с температурой. Модуль продольной упругости (модуль Юнга) 300 Гн/м2(3·104кгс/мм2). Механические свойства Бериллия зависят от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Предел прочности Бериллий при растяжении 200-550 Мн/м2(20-55 кгс/мм2), удлинение 0,2-2% . Обработка давлением приводит к определенной ориентации кристаллов Бериллий, возникает анизотропия, становится возможным значит, улучшение свойств. Предел прочности в направлении вытяжки доходит до 400-800 Мн/м2(40-80 кгс/мм2), предел текучести 250-600 Мн/м2(25-60 кгс/мм2), а относительное удлинение до 4-12%. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Бериллий - хрупкий металл; его ударная вязкость 10-50 кДж/м2 (0,1-0,5 кгс·м/см2). Температура перехода Бериллия из хрупкого состояния в пластическое 200-400°С.

 

Рисунок 1 – Гексагональный тип кристаллической решетки

В гексагональной решетке атомы расположены в вершинах и центре шестигранных оснований призм, а три атома – в средней плоскости призмы. На элементарную ячейку гексагональной плотноупакованной решетки приходятся шесть атомов (3 + (1/6)х12 + (1/2)х2 = 6).

Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов (0,009 барн на атом) и удовлетворительной стойкости в условиях радиации делает Бериллий одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. В Бериллии выгодно сочетаются малая плотность, высокий модуль упругости, прочность, теплопроводность. По удельной прочности Бериллий превосходит все металлы. Благодаря этому в конце 50 - начале 60-х годов Бериллий стали применять в авиационной, ракетной и космической технике и гироприборостроении. Однако высокая хрупкость Бериллия при комнатной температуре - главное препятствие к его широкому использованию как конструкционного материала. Бериллий входит в состав сплавов на основе Al, Mg, Cu и других цветных металлов.

Некоторые бериллиды тугоплавких металлов рассматриваются как перспективные конструкционные материалы в авиа- и ракетостроении. Бериллий применяется также для поверхностной бериллизации стали. Из Бериллия изготовляют окна рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). Бериллий применяется в нейтронных источниках на основе радия, полония, актиния, плутония, так как он обладает свойством интенсивного излучения нейтронов при бомбардировке α-частицами. Бериллий и некоторые его соединения рассматриваются как перспективное твердое ракетное топливо с наиболее высокими удельными импульсами.

  1. Широкое производство чистого Бериллия началось после 2-й мировой войны. Переработка Бериллия осложняется высокой токсичностью летучих соединений и пыли, содержащей Бериллий, поэтому при работе с Бериллием и его соединениями нужны специальные меры защиты. 
    Вычертите диаграмму состояния системы алюминий–германий. Опишите взаимодействие компонентов в жидком и твердом состояниях, дайте определения всем линиям диаграммы и укажите какие превращения происходят на них. Во всех областях диаграммы укажите фазовый и структурный состав, дайте определение фазам и структурам. Опишите превращения, протекающие при охлаждении сплава I. Укажите возможные виды термической обработки этого сплава и приведите их графики. Объясните характер изменения свойств от состава сплава в данной диаграмме, приведите график.

 

Диаграмма состояния Αl-Ge является диаграммой эвтектического типа. Промежуточные фазы не образуются. Она характеризуется эвтектическим превращением при температуре 424°Сэвтектической точкой при содержании 30,3 % (ат.) Ge. Дальнейшие исследования не внесли каких-либо существенных изменений в изображении фазовых равновесий. Используя высокочистые материалы, содержащие 99,999 % (по массе) А1, 99,999 % (по массе) Ge, температура эвтектики была определена равной 415,5 °С. Эвтектика кристаллизуется при содержании 28,4 % (ат.) При давлении 2 ГПа образование эвтектики происходит при концентрации 43,4 % (ат.) Ge и температуре 440 °С.

В результате рентгеновского анализа максимальная растворимость Ge в (А1) равна 2,8 % . С понижением температуры растворимость Ge в А1 уменьшается. При температурах 395, 294 и 177°С она составляет 1,97, 0,55 и 0,2% Ge, соответственно. Методом обратного рассеивания ионов определена растворимость Ge в тонком слое Аl толщиной 100—600нм, которая составляет 0,034; 0,034; 0,056; 0,176; 0,77; 0,78; 1,45% (ат.) Ge при температурах 120, 160, 205, 250, 310, 350 и 395° С, соответственно.

По данным рентгеновского, микроструктурного анализов, измерения микротвердости и удельного электросопротивления максимальная растворимость Ge в (А1) под действием высокого давления 2ГПа увеличивается от 2,8 до 7,3 % Ge. При давлении ~7 ГПа и температуре 400 °С она может достигать -18 % Ge.

Солидус системы А1—Ge в области, богатой Ge, имеет ретроградный характер. растворимость А1 в (Ge) при температуре 925, 900, 675, 500, 300 °С составляет 0,17; 0,43; 0,97; 0,92; 0,63 % (ат.). Согласно результатам микроструктурного анализа и измерения микротвердости максимальная растворимость А1 в (Ge) при эвтектической температуре составляет 1,2 % (ат.); ретроградный характер измерения растворимости не обнаружен.

Рисунок 1 – Диаграмма состояний системы алюминий-германий и кривая охлаждения

 

 

 

  1. Причины образования дендритной структуры и способы ее устранения

 

Дендритная структура – неоднородность химического состава сплавов, возникающая при кристаллизации.

Она обусловлена тем, что сплавы, в отличие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. При этом состав кристаллов, образующихся в начале затвердевания, может существенно отличаться от состава последних капель кристаллизующегося маточного раствора. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину интервала кристаллизации (для стали – сера, кислород, фосфор, углерод). Ликвация оказывает, как правило, вредное влияние на качество металла.

Дендритная ликвация проявляется в микрообъемах сплава, близких к размеру зерен.

Дендритная структура может быть ослаблена продолжительным нагревом затвердевшего сплава при температурах, обеспечивающих достаточную скорость диффузии (несколько ниже солидуса). После такого нагрева, называемого диффузионным отжигом или гомогенизацией, дендритная структура литого сплава уже не выявляется и сплав состоит из однородных кристаллов твердого раствора.

Диффузионный отжиг – это термическая обработка, при которой главным процессом является устранение последствий дендритной ликвации.

Слитки из углеродистых сталей обычно не подвергают диффузионному отжигу, так как в них при нагреве под горячую обработку давлением из-за быстрой диффузии углерода в аустените дендритная ликвация успевает исчезнуть. Диффузионному отжигу подвергают слитки легированной стали с целью уменьшения дендритной или внутрикристаллитной ликвации, которая повышает склонность стали, обрабатываемой давлением, к хрупкому излому, к анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие; внутренние трещины, наблюдаемые в изломе в виде белых овальных пятен).

Дендритная ликвация понижает пластичность и вязкость легированной стали. Поэтому слитки и крупные отливки нередко подвергают гомогенизирующему или диффузионному отжигу. Нагрев при диффузионном отжиге должен быть до высоких температур 1100-1200°С, так, как только в этом случае более полно протекают диффузионные процессы, необходимые для выравнивания в отдельных объемах состава стали. Диффузия наиболее интенсивно протекает в начале выдержки, заметно снижаясь с течением времени. Поэтому во избежание образования большого количества окалины, уменьшения расхода топлива и увеличения производительности печей выдержка должна быть минимальной, обычно 15-20 ч. После выдержки садку охлаждают до 800-820°С в печи, а далее на воздухе.

Во многих случаях для уменьшения дендритной ликвации не проводят специального диффузионного отжига, а выполняют более высокий и длительный нагрев для горячей деформации. В результате диффузионного отжига получается крупное зерно. Этот недостаток устраняется при последующей обработке слитка давлением или в процессе последующей термической обработке.

 

  1. Вычертите диаграмму состояния железо-цементит. Укажите структурные составляющие во всех областях диаграммы, дайте названия линиям и происходящим на них превращения. Опишите превращения и постройте кривую охлаждения в интервале температур от 0 до 16000С для сплава, содержащего 1%С. Для заданного сплава при температуре 13500С определите процентное содержание углерода в фазах и их количественное соотношение.

 

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора  выделяются  кристаллы  твердого  раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате    которого    образуется    твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей  заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

 

 

Рисунок 3: а - диаграмма железо-цементит, б - кривая охлаждения для сплава, содержащего 1,0% углерода

 

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит+ледебурит, эвтектических — ледебурит  и   заэвтектических — цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из  аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате   одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,03+Ц6,67].

Информация о работе Контрольная работа по "Химия"