Автор работы: Пользователь скрыл имя, 03 Ноября 2010 в 16:54, Не определен
Доклад
В промышленности серу получают путем выталкивания из рудников горячими струями пара. Чтобы получать серу этим способом в подземные трубы накачивают горячие струи пара и сжатый воздух. Под действием пара расплавившаяся сера поднимается по трубам с помощью горячих паров и воздушного давления , поднявшись превращается в кристаллы.
Чтобы отделить от примесей серу, полученную в свободном виде, плавят.
В промышленности чтобы получить серу из сульфида водорода H2S окислением O2, при 500°С участием катализатора ( активированного угля или Fe(OH)3).
2H2S+O2→2H2O+2S
SO2+2H2S→3S+2H2O
В лаборатории серу получают следующими способами:
-Термическим разложением пирита:
FeS2→FeS +S
-Взаимодействием сульфида водорода с гологенами:
H2S+Сl2→2HCl+S H2S+J2→2HJ+S
-Окислением сульфида водорода SO2 при высокой температуре:
2H2S+SO2 → 2H2O+3S
-Восстановлением из сульфатов:
CaSO4+4C→CaS+4CO
CaS+CO2+H2O→↓CaCO3+H2S
2H2S
+O2→2S+2H2O
Физические и химические свойства: Сера имеет 4 стабильных изотопа: 33S, 34S, 35S,36S. Сера - кристаллическое вещество желтого цвета. Она не проводит тепла и электричества, не растворяется в воде, но растворяется в дисульфиде углерода ( CS 2 ) , толуоле (C6H5-CH3). Сера плавится при температуре 112,8 ºС,и кипит при температуре 444,6 ºС.
Сера имеет три аллотропных модификации: ромбическая, моноклинная, и пластическая. Первые 2 относятся к кристаллическим разновидностям, а третья – аморфная. Кристаллическая сера, состоящая из восьми атомов S8 при температуре > 160ºС распадается и переходит в различные виды пластической серы:
Сера типичный неметалл. В химических реакциях сера проявляет себя как окислитель, так и восстановитель. Окислительные свойства серы выражены слабее чем у кислорода, поэтому в реакциях с элементами с большей электроотрицательностью (F, Cl, O, N) она проявляет себя как восстановитель, а с элементами с низшей электроотрицательностью чем у нее, она проявляет себя как окислитель. Сера вступает в реакции с металлами при нагревании, а с ртутью и щелочами взаимодействует при обычных условиях:
2Na+S→Na2S 2Al+3S →Al2S3
2Hg+S→HgS C+2S→CS2
Fe+S→FeS Si+S→SiS
Сера взаимодействует со всеми неметаллами кроме инертных газов и йода.
S+3F2→SF6 Si+2S→SiS2 H2+S→H2S
2P+5S→P2S5 S+O2 →SO2 2S+Cl2→S2Cl2 C+2S→CS2
Сера взаимодействует со сложными веществами:
Na2S+S→Na2S2
С горячими растворами концентрированной серной, с концентрированной и разбавленной азотной кислот:
2H2SO4(конц)+S→3SO2+2H2O
6HNO3(конц)+S→2H2SO4+6NO2+
2HNO3(разб) +S → H2SO4 +2NO
При нагревании сера вступает в реакцию со щелочами и пероксидами:
Na2O2+2S→Na2S+SO2
6KOH+3S→K2SO3+2K2S+3H2O
Сера используется в сельском хозяйстве как защита от насекомых, в производстве спичек, при получении серной кислоты, при вулканизации каучука, широко используется в производстве пороха.
Для приготовления черного пороха используется смесь из 75% KNO3 , 15% C и 10% S; при нагревании происходит реакция:
2KNO3 + S + 3C → K2S + 3CO2 + N2 ,
в результате
которой происходят резкое увеличение
объема смеси ( в 2000 раз) – взрыв.
Сероводород
Н2S- бесцветный газ с резким запахом тухлых яиц; молекула Н2 S имеет угловую форму, длина связи S —H 0,1336 нм, угол HSH 92,06°.
При
обычной температуре сероводород устойчив,
в вакууме начинает диссоциировать
выше 500 °С, при ~ 1690°С полностью разлагается.
В воде Н2S хорошо растворим ( 3 объема
на 1 объем воды при 20°С. Водный раствор
сероводорода-сероводородная кислота-слабая
кислота (K1 = 9,5·10-8, K2
= 1·10-14), образующая соли-сульфиды
и гидросульфиды.
Известен клатрат Н2S · 6Н2О.
Лучше, чем в воде,сероводород растворяется
в органических растворителях; например,
в одном объеме этанола растворяется 7,42 (20
°С) объемов H2S. В промышленности
сероводород получают как побочный продукт
при очистке нефти, природных и промышленных
газов. Основные методы очистки этих газов
с получением сероводорода-
В лаборатории сероводород получают действием Н2 SO4 на FeS; а также из Н2 и паров S при 500-600 °С в присутствии катализатора (пемза); удобный метод получения H2S-нагревание серы с парафином:
FeS+2HCl→FeCl2+H2S↑
Cероводород-сильный восстановитель:
KMnO4+5H2S+3H2SO4→2MnSO4+
H2S+4Br2+4H2O→H2SO4+8HBr
3FeCl3 + H2S → 2FeCl2 + 2HCl + S
При нагревании на воздухе постепенно окисляется, при ~ 250 °С воспламеняется. Горит, при избытке О2 образует SO2 и воду, при недостатке-S и воду. Сероводород легко окисляется в водном растворе кислородом, галогенами. На восстановление I2 до HI в растворе основано определение H2S методом иодометрии. Сильные окислители (HNO3, Cl2) окисляют сероводород до Н2SO4.
Сероводород взаимодействует с большинством металлов и их оксидами при нагревании в присутствии влаги и воздуха с образованием сульфидов металлов.
С олефинами и гидроксидами, солями, спиртами, хлорароматическими соединениями, эпоксидами дает тиолы, с нитрилами –тиоамиды и другими соединениями S с водородом - сульфоны H2Sx.
На реакции H2S с солями тяжёлых металлов с образованием осадков основано определение сульфид-иона в растворе и атмосфере :
В природе H2S встречается главным образом в месторождениях нефти и природного газа, а также в вулканических газах и водах минеральных источников; он растворен в глубоких (ниже 150-200 м) слоях воды Черного моря (концентрация сероводород у дна достигает 11-14 мл/л). сероводород постоянно образуется в природе при разложении белковых веществ.
Сероводород
применяют в основном для производства
S и H2SO4. Его используют также
для получения различных сульфидов (в
частности, сульфидов и гидросульфидов
Na, NH4), сераорганических соединений
(тиофены, тиолы и т. п.), тяжелой воды,
для приготовления лечебных сероводородных
ванн, в аналитической химии для осаждения
сульфидов металлов. Взрывоопасен, ПДК
(предельно допустимая концентрация) в воздухе
4,5-45,5% по объему.
Оксид серы (IV) SО2 - сернистый ангидрид ,бесцветный газ с резким запахом, угнетающе действующий на растения. Молекула SО2 изоэлектронна молекуле озона, имеет угловую форму: валентный угол O- S- O равен 119о. Кратность связи S- O составляет 1.5 .
Диоксид серы получают непосредственным сжиганием серы на воздухе или длительным отжигом сульфидов:
4FeS2 + 11O2→2Fe2O3 + 8SО2
SО2
хорошо растворяется в воде (39.3 объема
в 1 объеме Н2О при 20оС, то есть
около 10% по массе) с образованием гидратов
SО2 . nH2O. Раствор имеет
кислую реакцию, но в индивидуальном виде
H2SO3 не выделена из-за ее термодинамической
неустойчивости.
Восстановительные свойства SО2 обусловлены присутствием в его молекуле неподеленной электронной пары. SО2 взаимодействует с окислителями различной силы (свободные галогены, хлорная, бромная и иодная вода; растворы KMnO4,HNO3, H2SeO3 и др.), образуя различные производные S(VI):
I2 + SO2 + 2H2O = 2HI +H2SO4 ,
5SO2 + 2KMnO4 + 2H2O → 2MnSO4 + K2SO4 + 2H2SO4
H2SeO3 + 2SO2 + H2O
SO2 + 2HNO3 → H2SO4 + 2NO2
Важнейший процесс для химической промышленности и экологии - окисление SO2кислородом до SO3 :
в технике осуществляется при повышенной температуре с использованием катализатора :
При отсутствии воды выше 210оС диоксид серы реагирует с NO2 с образованием нитрозилдисерной кислоты (NO)2S2O7: