Алюминий, его основные характеристики

Автор работы: Пользователь скрыл имя, 06 Декабря 2009 в 18:45, Не определен

Описание работы

Алюминий - самый распространенный в земной коре металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al2O3.xH2O и минералы корунд Al2O3 и криолит AlF3.3Na

Файлы: 1 файл

Алюминий. .doc

— 98.50 Кб (Скачать файл)

     (Na,K)2[Al2Si2O8] + 2CaCO3 = 2CaSiO3 + NaAlO2 + KAlO2 + 2CO2­

    б) образовавшуюся массу выщелачивают водой - образуется раствор алюминатов натрия и калия и шлам CaSiO3:

     NaAlO2 + KAlO2 + 4H2O = Na[Al(OH)4] + K[Al(OH)4]

    в) через  раствор алюминатов пропускают образовавшийся при спекании CO2:

     Na[Al(OH)4] + K[Al(OH)4] + 2CO2 = NaHCO3 + KHCO3 + 2Al(OH)3

    г) нагреванием Al(OH)3 получают глинозем:

     2Al(OH)3 = Al2O3 + 3H2O

    д) выпариванием маточного раствора выделяют соду и  потаж, а ранее полученный шлам идет на производство цемента.

     При производстве 1 т Al2O3 получают 1 т содопродуктов и 7.5 т цемента.

     Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты - природные и особенно искусственные - применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором.

     Галогениды  алюминия в обычных условиях - бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF3 основан на действии безводного HF на Al2O3 или Al:

     Al2O3 + 6HF = 2AlF3 + 3H2O

     Соединения  алюминия с хлором, бромом и иодом  легкоплавки, весьма реакционноспособны и хорошо растворимы не только в  воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

     Плотности паров AlCl3, AlBr3 и AlI3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам - Al2Hal6. Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена - с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора.

     С галогенидными солями ряда одновалентных  металлов галогениды алюминия образуют комплексные соединения, главным  образом типов M3[AlF6] и M[AlHal4] (где Hal - хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl3 в качестве катализатора (при переработке нефти и при органических синтезах).

     Из  фторалюминатов наибольшее применение (для получения Al, F2, эмалей, стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:

     2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9H2O

     Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих  металлов.

     Хотя  с водородом алюминий химически  не взаимодействует, гидрид алюминия можно  получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH3)n. Разлагается при нагревании выше 105оС с выделением водорода.

     При взаимодействии AlH3 с основными гидридами в эфирном растворе образуются гидроалюминаты:

     LiH + AlH3 = Li[AlH4]

     Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой. Они - сильные восстановители. Применяются (в особенности Li[AlH4]) в органическом синтезе.

     Сульфат алюминия Al2(SO4)3.18H2O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

     Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

     Из  остальных производных алюминия следует упомянуть его ацетат (иначе - уксуснокислую соль) Al(CH3COO)3, используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.

     Несмотря  на наличие громадных количеств  алюминия в почках, растениях, как  правило, содержат мало этого элемента. Еще значительно меньше его содержание в животных организмах. У человека оно составляет лишь десятитысячные доли процента по массе. Биологическая роль алюминия не выяснена. Токсичностью соединения его не обладают. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Алюминий 
 

     Алюминий - самый распространенный в земной коре металл. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al2O3.xH2O и минералы корунд Al2O3 и криолит AlF3.3NaF.

     Впервые алюминий был получен Велером  в 1827 году действием металлического калия на хлорид алюминия. Однако, несмотря на широкую распространенность в  природе, алюминий до конца XIX века принадлежал  к числу редких металлов.

     В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al2O3 в расплавленнном криолите. Al2O3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al2O3 около 2050оС, а криолита - 1100оС. Электролизу подвергают расплавленную смесь криолита и Al2O3, содержащую около 10 масс.% Al2O3, которая плавится при 960оС и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF3, CaF2 и MgF2 проведение электролиза оказывается возможным при 950оС.

     В периодической системе алюминий находится в третьем периоде, в  главной подгруппе третьей  группы. Заряд ядра +13.

     Алюминий - типичный амфотерный элемент.

     В виде простого вещества алюминий - серебристо-белый, довольно твердый металл с плотностью 2,7 г/см3 . Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминевый провод весит вдвое меньше медного.

     На  воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой  оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. Устойчивость алюминия позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты.

     Алюминий  легко вытягивается в проволоку  и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

     Основную  массу алюминия используют для получения  различных сплавов, наряду с хорошими механическими качествами характеризующихся  своей легкостью. Важнейшие из них – дуралюминий, силумин  и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях промышленности. По широте применения сплавы алюминия занимают второе место после стали и чугуна.

     При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и  взаимодействие его с серой. С  хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

     По  отношению к воде алюминий вполне устойчив. Но если механическим путем  или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:

     2Al + 6H2O = 2Al(OH)3 + 3H2­

     Сильно  разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоде), тогда как при средних  концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.

     В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях  алюминий трехвалентен. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

     

 
 
 
 
 
 
 
 
 
 
 

                                          Выполнила:

                    ученица 6 « А»

                         ОСШ №4

                 Аллянова Екатерина 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Реакции, проведенные на практикуме

1. 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­

На пластинке  алюминия начал выделяться водород, постепенно пластинка растаяла.

2. 2Al + 3H2SO4 = Al2(SO4)3 + 3H2­

Алюминий  постепенно растворяется в разбавленной кислоте. При кипячении скорость растворения увеличивается.

3. 2Al + 6CH3COOH = 2Al(CH3COO)3 + 3H2­

Алюминий  постепенно растворяется в разбавленной кислоте при кипячении.

4. 4Al + 3O2 = 2Al2O3

При сгорании алюминий превращается в белый порошок.

5. Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Полученный  оксид алюминия растворяется в щелочи.

6. 2Al + 3I2 = 2AlI3

В ступку со смесью алюминия и иода добавили каплю воды в качестве катализатора. Реакция прошла быстро, выделились пары иода фиолетового цвета.

7. 3CuCl2 + 2Al = 3Cu + 2AlCl3

Раствор постепенно стал прозрачным, на дно  пробирки выпал осадок меди в виде бурых камешков.

8. Al2(SO4)3 + 6NH4OH = 2Al(OH)3¯ + 3(NH4)2SO4

Образовался осадок, похожий на белый жидкий кисель.

9. Al(OH)3 + NaOH = Na[Al(OH)4]

Осадок  растворился в щелочи.

Информация о работе Алюминий, его основные характеристики