Автор работы: Пользователь скрыл имя, 29 Октября 2015 в 15:54, реферат
Для того, чтобы перейти к рассмотрению основных этапов развития ГИС, я бы хотела упомянуть главные предпосылки, которые привели к образованию науки геоинформатики в целом:
широкое распространение компьютеров и совершенствование
средств периферии;
накопление обширных аэрокосмических, статистических и
других материалов;
потребность упорядочения сведений в базах данных для разнообразных целей;
необходимость оперативных принятий решений и др [1].
Введение………………………………………………………………………………………3
Глава 1. Этапы развития ГИС……………………………………………………………….4
Глава 2. Наиболее популярные современные ГИС……………………………………….10
Заключение………………………………………………………………………..…………26
Список литературы………………………………………………………..………………...27
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
федеральное государственное автономное образовательное учреждение высшего образования
«Санкт-Петербургский
национальный
Институт международного бизнеса и права
РЕФЕРАТ
по дисциплине: «Компьютерные технологии в инновационной и педагогической деятельности»
на тему: «История развития ГИС за рубежом и в РФ. Наиболее популярные современные ГИС. Их краткая характеристика.»
Выполнила: магистрант 1 курса группы О4122 |
очной формы обучения ИМБИП, |
Янковская Валерия Владимировна |
Руководитель: к.ф.-м.н., доцент Хахаев Иван Антатольевич |
Баллы ____________________________ |
Подпись __________________________ |
«____»_____________________ |
Санкт-Петербург
2015г.
Оглавление:
Введение…………………………………………………………
Глава 1. Этапы развития ГИС……………………………………………………………….4
Глава 2. Наиболее популярные современные ГИС……………………………………….10
Заключение……………………………………………………
Список литературы……………………………………………………
Введение
Геоинформационные технологии существуют уже около 50 лет. И представляют собой одно из наиболее бурно развивающихся направлений среди информационных технологий. Если разобраться, то геоинформационные технологии представляют из себя несколько больше, чем просто карту, помещенную в компьютер. В то же время, понятие “географическая информационная система (геоинформационная система, ГИС) неразрывно связано с обычной печатной картой. По сути любая географическая карта есть модель земной поверхности и является объектом анализа её пользователей. С одной стороны, применение ГИС для обработки и анализа пространственной информации в различных областях жизнедеятельности способствует возникновению междисциплинарных понятий и методов. С другой стороны, развитие самой геоинформатики приводит к организации внутренних (собственных) требований к объектам изучения, что приводит к определенным ограничениям методов, используемых в конкретных дисциплинах (строительстве, геологии, биологии и т.д.). Такая ситуация создает атмосферу живого общения людей, которые занимаются различной деятельностью (иногда очень разной), но объединенных геоинформационным подходом к работе или исследованиям.
Для того, чтобы перейти к рассмотрению основных этапов развития ГИС, я бы хотела упомянуть главные предпосылки, которые привели к образованию науки геоинформатики в целом:
Глава 1. Этапы развития ГИС
Взгляд на историю существенно зависим от точки зрения (места в клубке идей и технологий, из которого тянется сегодняшняя нить геоинформатики в ее современном и вполне устоявшемся понимании). Геоинформатика как наука относительно молода, но и она имеет свою историю, которая может быть разделена на четыре нечетко выраженных периода.
I период. В 60-е годы XX в. совершенствовались техника и опыт под единой, пока не оформившейся «крышей». Наиболее ярким примером этого периода было создание в 1963— 1971 гг. Канадской ГИС (CGIS) под руководством Р.Томлинсона. Ее методические основания обобщены в его докторской диссертации, а технологические и прикладные аспекты освещены в десятках, если не сотнях статей, в том числе серии избранных публикаций и другой периодике. Ставшая одним из примеров крупной универсальной региональной ГИС национального уровня, CGIS может считаться классикой, и «ни одна из систем не может сравниться с Канадской ГИС по числу статей, ссылающихся на нее». Данная система создавалась для анализа данных инвентаризации земель Канады в области рационализации землепользования. Выполнялось наложение и измерение площадей, ранее не использовавшиеся в геоинформатике. Применялась абсолютная система координат. Позднее была создана база данных на основе тематических слоев, налажен дистанционный доступ к ней, а еще позднее была предпринята попытка приспособить Канадскую ГИС к сетевым технологиям, однако появились более современные системы, с которыми ей было сложно конкурировать. К тому же, как и всякая пионерная разработка, проект оказался весьма дорогостоящим.
Работы шведской школы геоинформатики концентрировались вокруг ГИС земельно-учетной специализации, в частности Шведского земельного банка данных, предназначенного для автоматизации учета земельных участков (землевладений) и недвижимости.
Основная цель конгресса — упорядочить собранный материал и облегчить доступ к нему, в частности для Карты в основном строились в виде грубых алфавитно-цифровых распечаток — изображений, состоящих из букв и цифр, которые благодаря разной плотности создавали примитивный эффект полутоновых изображений.
Вторая половина 60-х годов XX в. знаменательна также работами. Гарвардской лаборатории машинной графики и пространственного анализа. Созданное здесь программное обеспечение стало классическим в сфере автоматизированного картографирования. Так, первый и наиболее известный пакет SYMAP позволял создавать общегеографические карты на алфавитно-цифровых печатающих устройствах. По зднее, к концу 60-х годов с переходом к работам на графопостроителях, SYMAP трансформировалась в CALFORM. К этому же времени были разработаны программы SYMVU (для трехмерных изображений) и GRID (для работ с растровыми ячейками). Этот набор программ в 70-е годы преобразовался в POLYVRT и далее — в ODYSSEY, как комплексного пакета, базирующегося на векторных данных. Нельзя сказать, что в 60-е годы состоялось становление геоинформатики в России, но положительный результат, несмотря на существенные материальные затраты, был получен.
II период. В начале 70-х годов XX в. ситуация начала меняться. Стало очевидно, что у геоинформатики большое будущее, появились примеры эффективного применения ГИС, но стоимость техники, программного обеспечения и обслуживания были столь высоки, что для многих они просто недоступны. Поэтому первая половина 70-х годов — это период шлифовки и доводки методики в крупных организациях и энтузиазм отчаянных одиночек. Зазвучали также голоса пессимистов: геоинформатика, мол, это «овчинка, которая не стоит выделки», так как ее продукция получается просто «золотой». Это был период некоторого застоя. Однако, справедливости ради, отметим появление в это время нескольких крупных теоретических обобщений и прежде всего — по методике структурирования пространственных данных.
Состояние и история разработок ГИС в Швеции, отражающая срез на середину 70-х годов, представлена специальным монографическим изданием журнала «Картографика» . По данным, сообщаемым во вводной статье этого издания О. Вастессоном, к середине 70-х годов в стране шла разработка и эксплуатация 12 информационных систем (ГИС или информационных систем, расширяемых до их уровня). В предисловии к книге Д.Тейлор анализирует также процесс их развития в Канаде, разделенный на пять стадий, иллюстрирующих «в неакадемических терминах и мерах» степень энтузиазма и надежд разработчиков ГИС: сверх энтузиазм первых экспериментов, не подкрепленный реальными возможностями; разочарование от первых неудач; возросшая активность и новые надежды; второй кризис, связанный с трудностями решения некоторых проблем; движение к завершению после их решения.
Нужно отметить существенное взаимовлияние двух геоинформационных школ. Анализ ранней канадской и шведской литературы по ГИС показывает, что ГИС «первого поколения» (60-е — начало 70-х годов) значительно отличались от того, что понимается под ними в настоящее время. Они зачастую были ориентированы на чисто утилитарные задачи инвентаризации земельных ресурсов, земельного кадастра и учета в интересах совершенствования системы налогообложения, решаемые путем автоматизации земельно-учетного документооборота в виде банков данных соответствующей специализации. Основная функция ГИС состояла во вводе в машинную среду первичных учетных документов для хранения и регулярного обновления данных, достаточно незамысловатой (на сегодняшний взгляд) обработки, включающей агрегацию данных и генерацию итоговых отчетных статистических табличных документов, вполне аналогичных «Земельным балансам».
Инвентаризационные задачи, но на иной исходной основе — путем массового цифрования карт — решались первоначально и в Канадской ГИС. Однако участие в их разработках научно- исследовательских коллективов, в том числе профессиональных географов (в Швеции — это коллектив Университета Лунда), позволило заложить в их основу некоторые фундаментальные принципы, которые обеспечили их выход в сферы не только узко прагматических, но и более универсальных интересов и областей применения. Первый и главный шаг, который вывел ГИС из круга баз данных общего назначения, заключался во введении в число атрибутов операционных объектов (земельных участков, строений, физических и юридических лиц, ареалов использования земель, бонитировки почв или лесотаксации) признака пространства, в какой бы форме местоуказания (в координатах, в иерархии административной принадлежности, в терминах принадлежности к ячейкам регулярных сетей членения территории) он ни выражался. Достаточно революционным являлось уже указание координат центроидов объектов — прием, активно использовавшийся в Швеции. Напомним, что в начале 60-х годов массовое цифрование карт и их представление в векторном формате было уделом отдельных экспериментов картографических служб оборонных ведомств.
В этот период сформировалось понятие пространственных объектов, описываемых их позиционными и непозиционными атрибутами. Оформились две альтернативные линии представления — растровые и векторные структуры, включая топологические линейно- узловые представления. Чуть позже была создана технология массового цифрования карт основного источника данных в Канадской ГИС. Поставлены и решены задачи, образующие ядро геоинформационных технологий: наложение (оверлей) разноименных слоев, генерация буферных зон, полигонов Тиссена и иные операции манипулирования пространственными данными, включая определение принадлежности точки полигону, операции вычислительной геометрии вообще. Найдены эффективные решения других геометрических проблем, алгоритмы аналитических операций и графоаналитических построений.
Функциональная ограниченность ГИС «первого поколения» (например, отсутствие или примитивность средств графической и картографической документации) имела и чисто технические причины: неразвитость периферийных устройств, давно забытый пакетный режим обработки данных (дисплей, применение которого позволило реализовать интерактивное взаимодействие оператора и машины, становится обычным устройством отображения лишь в середине 70-х годов) на крупных и мощных, но безумно (по сегодняшним меркам) дорогих ЭВМ, непереносимость программного обеспечения, критичность вычислительных ресурсов по отношению к объемам данных и времени исполнения задач. Так или иначе, ядро геоинформационных технологий было сформировано до начала 70-х годов, определив облик ГИС первого поколения.
Для 70-х годов характерно достаточно тесное взаимодействие методов и средств геоинформатики с параллельной и ранее независимой линией развития цифровых методов картографирования и автоматизированной картографией. Начало было положено работами Ж. Бертена по печати компьютерных статистических карт на примитивных печатающих устройствах, ранее упоминавшимися экспериментами Лаборатории машинной графики и пространственного анализа Гарвардского университета, успехами в области автоматизированного картографирования государственных топографо-геодезических служб. Считается, что первая автоматизированная картографическая система была создана в Великобритании в Экспериментальной картографической части Королевского колледжа искусств Д.Бикмором в 1964 г. В России сформировалось новое направление — математико-картографическое моделирование.
Общность технической базы, структурно-функциональное единство или подобие автоматизированных картографических систем и ГИС создали в 70-х годах предпосылки к их будущей интеграции, породив, однако, «картоцентрический» взгляд на геоинформатику, ее сущность и историю.
К этому периоду относится быстрый прогресс геоинформационных и автоматизированных картографических технологий в США. Здесь следует сказать о Геологической службе США и Бюро переписей, в частности, в связи с созданием системы, ориентированной на детальную характеристику уличной сети городов и организацию транспортного движения. Создано также несколько компьютерных атласов по материалам переписей.
Первый том инвентория содержал стандартизованные описания 85 полномасштабных ГИС; несколько сотен описаний иных программ обработки географических данных помещены во втором и третьем томах. Проблематика ГИС постоянно входила в программы конгрессов МГС, включая XXIII Московский (1976), оказавший значительное влияние на развитие советской географии, обратив внимание на важность развертывания исследований в области геоинформатики. В программах Международных картографических конференций Международной картографической ассоциации (МКА) тематика ГИС стала выноситься в отдельные рубрики значительно позже, уже после XI конференции МКА в Варшаве в 1982 г.