Автор работы: Пользователь скрыл имя, 27 Февраля 2011 в 11:51, курсовая работа
Осадочные породы образовались на поверхности литосферы в результате накопления минеральных масс, полученных в процессе разрушения магматических, метаморфических и осадочных горных пород. Процессы разрушения горных пород литосферы и накопления новых пород на поверхности Земли идут повсеместно: в пустынях, где энергичную работу ведет ветер; вдоль морских и океанических берегов, где волны перемещают обломочный материал; на дне глубоких частей морей и океанов, где отмирающие организмы дают начало толщам осадочных пород. Условия образования накладывают существенный отпечаток на облик осадочных пород.
ВВЕДЕНИЕ………………………………………………………………………..3
ГЛАВА 1. СОСТАВ ОСАДОЧНЫХ ПОРОД……………………...……………4
1.1. Химический состав осадочных пород……………………………...……..4
1.2. Минеральный состав осадочных пород……………………………..……9
ГЛАВА 2. СТРОЕНИЕ ОСАДОЧНЫХ ПОРОД…………………………..…..15
2.1. Структура осадочных пород. Классификация сторон структур осадочных горных пород….…………………………………………………….15
ГЛАВА 3. ПРОИСХОЖДЕНИЕ ОСАДОЧНЫХ ГОРНЫХ ПОРОД…...……26
3.1. Виды зон осадконакопления……………………………………...………27
3.2. Анализ зоны осадконакопления………………………………….………31
ЗАКЛЮЧЕНИЕ………………………………………………………………….37
СПИСОК ЛИТЕРАТУРЫ……………………………………………………….38
2. Шароагрегатные, или сфероагрегатные, и примыкающие к ним многочисленные структуры в основном химического и биологического, реже механического (глиняные катуны и др.) происхождения, когда структурными элементами служат обычно сферические тела — агрегаты мелких кристалликов или аморфные образования, сохраняющие свою первичную форму: оолитовая, сферолитовая, пизолитовая, онколитовая, бобовая, копролитовая, комковатая, сгустковая, конкреционная, желваковая, окатышевая, псевдоолитовая и т.д. Они широко распространены в карбонатных, фосфатных, алюминиевых, железных, марганцевых и других породах.
3. Обломочные, или кластические, структуры (иначе — детритовые) — осадки и породы сложены обломками кристаллов, стекла, пород, органических остатков, т.е. имеют соответственно кристалло-, витро-, лито- и биокластическую структуру. Последняя нередко называется органогенно-обломочной или органогенно-детритовой. То, что зерна — обломки, видно по их контурам, которые представляют поверхности дробления с одной или разных сторон, первично целостного кристалла, оолита, раковины или вулканического стекла. Обломочные структуры свойственны всем обломочным породам, большинству глинистых и фосфоритовых, многим карбонатным, бокситовым, эффузивным и другим породам. Это самые распространенные осадочные структуры: ими обладают 60-70% осадочных пород или больше.
Размер
зерен — вторая, а для обломочных пород
— первостепенная сторона структуры.
Хотя еще существует некоторый разнобой
в понимании границ гранулометрических
(греч. гранула — зерно) типов и классов,
особенно в разных странах, все же большинство
из них понимается одинаково или близко.
Из двух основных требований к гранулометрическим
классификациям — естественность границ
и удобство в употреблении — в существующих
классификациях обычно выполняется одно,
так как в детальных классификациях совместить
их трудно. Требование естественности
границ особенно важно для обломочных
пород, слагающихся из зерен, переносившихся
и откладывавшихся индивидуально, когда
проявлялись качественные скачки между
разными популяциями зерен. К гранулометрии
кластолитов приспосабливаются размерностные
структуры и других пород, что упрощает
и унифицирует структурный анализ осадочных
пород в целом (табл 4.).
Таблица 4
Общая гранулометрическая классификация структур осадочных пород
Размерность, мм | Структура |
А. ЯСНОЗЕРНИСТЫЕ или ФАНЕРОМЕРНЫЕ (полномерные), — крупнее 0,05мм | |
I. 10000—10 | Грубомерные: гига- и грубообломочные, гига- и грубоскелетные |
10000—1000 | гигаобломочные,
или блоковые, гигаглыбовые, гигавалунные,
гигаскелетные |
Таблица 4
Общая гранулометрическая классификация структур осадочных пород
II. 10 — 2 | КРУПНОМЕРНЫЕ:
крупнообломочные — дресвяные,
дресвяниковые, гравийные, гравелитовые, крупноскелетные, гигакристаллические |
10 — 5 | крупнодресвяные (фавийные) и т.д. |
5 — 2 | мелкодресвяные —"— |
III. 2 — 0,05 | МЕЛКОМЕРНЫЕ: среднеобломочные
(песчаные),
среднескелетные, макрокристаллические |
2—1 | грубозернистые, грубопесчаные (грубопсаммитовые) |
1 —0,5 | крупнозернистые |
0,5 — 0,25 | среднезернистые |
0,25 — 0,1 | мелкозернистые |
0,1 —0,05 | тонкозернистые |
Б. КРИПТОМЕРНЫЕ, незернистые визуально: пелитоморфные, афанитовые —меньше 0,05 мм |
Таблица 4
Общая гранулометрическая классификация структур осадочных пород
IV. 0,05 — 0,0001 | МИКРОМЕРНЫЕ: микрообломочные,
или алевритовые,
микрозернистые, чешуйчатые, микробиоскелетные |
0,05 —
0,001
(0,005) |
алевритовые, микрозернистые, микрочешуйчатые |
0,05 — 0,01 | крупнопелитовая |
0,01 — 0,005 | среднепелитовая |
0,005 — 0,001 | мелко- (или грубопелитовая) |
0,001 — 0,0001 | субколлоидальные,
мелкопелитовые, и
ультратонкочешуйчатые |
V. Мельче 0,0001 | КОЛЛОИДАЛЬНЫЕ |
VI. Без зерна | НЕЗЕРНИСТЫЕ: бесструктурные, аморфные |
По размеру зерна все структуры, как и породы, прежде всего делятся на две самые крупные группы: яснозернистые, или фанеромерные (полномерные), зерно которых видно невооруженным глазом, и криптомерные, или скрытозернистые, а также и незернистые, которые визуально воспринимаются как сплошные, бесструктурные, что и обозначается двумя равноценными терминами: пелитоморфные, т.е. глиноподобные, землистые (например, мергели, опоки, диатомиты), и афанитовые — стекловатые по виду (обсидианы, кремни, яшмы). Граница между ними 0,05 мм — предел разрешения глазом зернистости. Эта самая важная граница в гранулометрическом ряду выбрана не по онтологическим (присущим объекту), а по познавательным, гносеологическим, т.е. методическим, критериям. Но, может быть, это счастливая случайность, с этой границей совпадает скачок свойств и в объектах — в породах: в более тонких осадках появляется связность, резко подскакивает высота капиллярного поднятия и т.д. Таким образом, граница 0,05 мм является также естественной, а не только методической. Естественное обоснование имеет и граница 2 мм: более крупные обломочные породы практически только литокластические, т.е. состоящие из обломков пород, а более мелкие часто также бывают и кристаллокластическими, т.е. состоящими и из минералов.
Граница 0,0001 мм (или 0,0002 мм) также естественна, так как отмечает верхний предел коллоидных растворов, не подчиняющихся силе тяжести, имеющих один заряд для всех частиц, снятие которых вызывает коагуляцию коллоидного раствора и осаждение. Это и предел разрешения светового микроскопа, так как размер коллоидальных частиц меньше половины длины световой волны.
Некоторое гидродинамическое обоснование границы в 10 мм приводит Л.Б. Рухин (1969), что и позволяет принять ее за раздел гравия и галек. Верхний предел галек (10 см) принимается без обоснования, а иногда его отодвигают до 20 см.
Отмеченные естественные, т.е. лежащие в самом объекте, границы все же обосновываются слабо. Это позволяет многим литологам для удобства и простоты пользоваться обычным арифметическим рядом, разбитым более или менее равномерно. Для хемогенных пород такой подход вполне приемлем.
Зернистость
осадочных пород
В становлении осадочной породы решающими являются термодинамические и химические условия зоны осадкообразования. Л.В. Пустовалов (1940), впервые введший понятие, определяет его так: "Поверхностную зону Земли, в которой совершаются процессы, имеющие то или иное непосредственное отношение к образованию осадочных пород, мы называем зоной осадкообразования или осадконакопления". С первого взгляда определение тавтологическое: оно повторяет почти буквально то, что надо определить. Но в действительности оно строго логичное и содержательное, а то, что оно воспринимается как весьма общее и неконкретное, зависит от сложности и разнородности этой оболочки Земли.
В самом деле, процессы образования осадочных пород, сначала в виде их зародышевой формы — осадка, охватывают буквально всю поверхность земли, каждый квадратный сантиметр ее, будь то суша или морское дно. Но, кроме того, они развертываются во всей толще гидросферы ив атмосфере, а также в верхней части литосферы. Осадкообразование на поверхности литосферы начинается на самых высоких вершинах гор, где морозное выветривание и ледниковая экзарация производят огромное количество грубых и тонких частиц, перемещающихся далее силой тяжести по склонам, снежными лавинами, селевыми потоками и реками, а также подземными водами, по пути образующими временные или постоянные накопления. Но процессы осадкообразования продолжаются и в них, и на плоских водоразделах во влажном климате эстафета переходит от физического выветривания к химическому, а также биологическому, пустыни — арена активных процессов осадкообразования как в механической (дюны), так и в химической (соленакопительные водоемы) формах.
В
болотах, озерах, лагунах накапливаются
тончайшие илистые и
Принадлежность всей гидросферы к зоне осадконакопления не вызывает сомнения: в ней совершаются многочисленные и энергичные процессы, имеющие прямое отношение к осадкообразованию — синтез частиц будущих осадков (планктонные организмы и их скелет, кристаллики солей при перенасыщении, коллоиды и т.д.), энергичный транспорт терригенного, вулканогенного, биогенного и иного вещества и гравитационное его осаждение, а также трансформация в результате механического, физического, химического и биологического воздействия на частицы, осадки и породы. Гидросфера, следовательно, участвует в осадкообразовании и вещественно, и энергетически.
Атмосфера принадлежит зоне осадкообразования потому, что в ее нижней части (по крайней мере до высоты 25-30 км, на которой проходят струйные течения со скоростью в многие сотни километров в час, переносящие вулканическую, эоловую и другую пыль) осуществляется перенос твердых, жидких и газовых частиц (энергетический вклад), осуществляется химическое воздействие атмосферы (ее газов, воды).
Зона осадкообразования (рис. 2.), следовательно, геометрически охватывает нижнюю часть атмосферы (25-30 км), всю гидросферу и верхнюю часть литосферы (до уровня стоячих грунтовых вод). Если сравнить ее с биосферой, выделенной В.И. Вернадским (1965), то зона осадкообразования полностью с ней совпадает по границам и составу. Это не случайно, а показывает суть осадочного процесса: он в основном на Земле биологический — по движущим силам и материальному вкладу биосферы. Это делает осадконакопление, как и жизнь на Земле, в основном космическим явлением и процессом. Поэтому осадочный процесс нельзя понять в отрыве от биосферы.
Если более близко рассмотреть зону осадкообразования (30), то обнаруживается резкая контрастность и неоднородность агрегатного состояния вещества (рис. 2.): здесь в равной мере господствуют все три состояния — твердое, жидкое, газовое. Ни в одной зоне Земли нет такого контрастного их соотношения, и уже из этой гетерогенности, точнее гетеротропности, следует ожидать энергичных процессов взаимодействия между этими состояниями вещества. Аккумулирует солнечную энергию в наиболее концентрированном виде прежде всего живое вещество, а затем глинистые и другие осадочные минералы. Благодаря живому веществу, аккумулировавшему огромные запасы солнечной энергии и всегда готовому легко отдать ее, становятся возможным антиэнтропийные процессы на Земле, повышающие уровень организации вещества и запасы его энергии высоких классов. Эта энергия становится причиной глобальных процессов преобразования вещества, круговоротов его, накопления и фракционирования химических элементов, мобилизации, транспортировки компонентов осадков и накопления их, а также глубокого преобразования в сингенезе и диагенезе.