Поиск и разведка нефтяных и газовых месторождений

Автор работы: Пользователь скрыл имя, 08 Января 2012 в 00:04, курсовая работа

Описание работы

Нефть и природный газ являются одними из основных полезных ископаемых, которые использовались человеком еще в глубокой древности. Особенно быстрыми темпами добыча нефти стала расти после того, как для ее извлечения из недр земли стали применяться буровые скважины. Обычно датой рождения в стране нефтяной и газовой промышленности считается получение фонтана нефти из скважины (табл.1).

Содержание работы

Введение…………………………………………………………………………...........3
Глава 1. Поиск и разведка нефтяных и газовых месторождений……………………5
1.1. Классификация залежей нефти и газа………………………… …….……5
1.2. Этапы поисково-разведочных работ……………………………….............8
1.3. Методы поиска и разведки нефтяных и газовых месторождений ……..10
1.4. Проблемы при поисках и разведке нефти и газа, бурении скважин…………………………………………………………………………..16
Глава 2. Методика ускоренной разведки газовых месторождений…………...........23
2.1. Основные положения ускоренной разведки и ввода в эксплуатацию
газовых месторождений……………………………….………………………...........23
2.2. Совершенствование методики ускоренной разведки газовых месторождений………………………………………………………………………..27
2.3. Методика разведки небольших сложно построенных газовых залежей (на примере месторождений Западного Предкавказья)…………………………….28
Заключение…………………………………………………………………………….33
Список литературы……………………………………

Файлы: 1 файл

Курсовая работа по нефтегазу.doc

— 77.31 Кб (Скачать файл)
 

   По значениям рабочих дебитов выделяется четыре класса залежей: высокодебитная, среднедебитная, малодебитная, непромышленная. В данной классификации пределы значений дебитов нефтяных и газовых залежей разнятся на одни порядок. Это обусловлено тем, что газовые залежи обычно разведываются и эксплуатируются более редкой сеткой скважин.

   По типу коллектора выделяется семь классов залежей: трещинный, кавернозный, поровый, трещинно-поровый, трещинно-кавернозный, кавернозно-поровый и трещинно-кавернозно-поровый. Для некоторых газовых и газоконденсатных шапок, нефтяных залежей, газовых и газоконденсатных залежей следует учитывать наличие в порах, кавернах и трещинах неизвлекаемой нефти, которая уменьшает объем пустот залежи и должна учитываться при подсчете запасов нефти и газа.

   Данная классификация является неполной, но она учитывает наиболее важные параметры, необходимые для выбора методики разведки и оптимальной технологической схемы эксплуатации.

   1.2. Этапы поисково-разведочных работ

   Поисково-разведочные работы выполняются в два этапа: поисковый и разведочный.

   Поисковый этап включает три стадии:

    1. региональные геолого геофизические работы;
    2. подготовка площадей к глубокому поисковому бурению;
    3. поиски месторождений.

   На первой стадии геологическими и геофизическими методами выявляются возможные нефтегазоносные зоны, дается оценка их запасов и устанавливаются первоочередные районы для дальнейших поисковых работ. На второй стадии производится более детальное изучение нефтегазоносных зон геологическими и геофизическими методами. Преимущество при этом отдается сейсморазведке, которая позволяет изучать строение недр на большую глубину. На третьей стадии поисков производится бурение поисковых скважин с целью открытия месторождений. Первые поисковые скважины для изучения всей толщи осадочных пород бурят, как правило, на максимальную глубину. После этого поочередно разведуют каждый из «этажей» месторождений, начиная с верхнего. В результате данных работ делается предварительная оценка запасов вновь открытых месторождений и даются рекомендации по их дальнейшей разведке.

   Разведочный этап осуществляется в одну стадию. Основная цель этого этапа – подготовка месторождений к разработке. В процессе разведки должны быть оконтурены залежи, коллекторские свойства продуктивных горизонтов. По завершении разведочных работ подсчитываются промышленные запасы и даются рекомендации по вводу месторождений в разработку.

   В настоящее время в рамках поискового этапа широко применяются съемки из космоса.

   Еще первые авиаторы заметили, что с высоты птичьего полета мелкие детали рельефа не видны, зато крупные образования, казавшиеся на земле разрозненными, оказываются элементами чего-то единого. Одними из первых этим эффектом воспользовались археологи. Оказалось, что в пустынях развалины древних городов влияют на форму песчаных гряд над ними, а в средней полосе – над развалинами иной цвет растительности.

   Взяли на вооружение аэрофотосъемку и геологи. Применительно к поиску месторождений полезных ископаемых ее стали называть аэрогеологической съемкой. Новый метод поиска прекрасно зарекомендовал себя (особенно в пустынных и степных районах Средней Азии, Западного Казахстана и Предкавказья). Однако оказалось, что аэрофотоснимок, охватывающий площадь до 500…700 км2, не позволяет выявить особенно крупные геологические объекты.

   Поэтому в поисковых целях стали использовать съемки из космоса. Преимуществом космоснимков является то, что на них запечатлены участки земной поверхности, в десятки и даже сотни раз превышающие площади на аэрофотоснимке. При этом устраняется маскирующее влияние почвенного и растительного покрова, скрадываются детали рельефа, а отдельные фрагменты структур земной коры объединяются в нечто целостное.

   Аэрогеологические исследования предусматривают визуальные наблюдения, а также различные виды съемок – фотографическую, телевизионную, спектрометрическую, инфракрасную, радарную. При визуальных наблюдениях космонавты имеют возможность судить о строении шельфов, а также выбирать объекты для дальнейшего изучения из космоса. С помощью фотографической и телевизионной съемок можно увидеть очень крупные геологические элементы Земли – мегаструктуры или морфоструктуры.

   В ходе спектрометрической съемки исследуют спектр естественного электромагнитного излучения природных объектов в различном диапазоне частот. Инфракрасная съемка позволяет установить региональные и глобальные тепловые аномалии Земли, а радарная съемка обеспечивает возможность изучения ее поверхности независимо от наличия облачного покрова.

   Космические исследования не открывают месторождений полезных ископаемых. С их помощью находят геологические структуры, где возможно размещение месторождений нефти и газа. В последующем геологические экспедиции проводят в этих местах полевые исследования и дают окончательное заключение о наличии или отсутствии этих полезных ископаемых. Вместе с тем, несмотря на то, что современный геолог-поисковик достаточно хорошо «вооружен» эффективности поисковых работ на нефть и газ остается актуальной проблемой. Об этом говорит значительное количество «сухих» (не приведших к находке промышленных залежей углеводородов) скважин.

   Первое в Саудовской Аравии крупное месторождение Дамам было открыто после неудачного бурения 8 поисковых скважин, заложенных на одной и той же структуре, а уникальное месторождение Хасси-Месауд (Алжир) – после 20 «сухих» скважин. Первые крупные залежи нефти в Северном море были обнаружены после бурения крупнейшими мировыми компаниями 200 скважин (либо «сухих», либо только с газопроявлениями). Крупнейшее в Северной Америке нефтяное месторождение Прадхо-Бей размерами 70 на 16 км с извлекаемыми запасами нефти порядка 2 млрд. т. было обнаружено после бурения на северном склоне Аляски 46 поисковых скважин.

   Есть подобные примеры и в отечественной практике. До открытия гигантского Астраханского газоконденсатного месторождения было пробурено 16 непродуктивных поисковых скважин. Еще 14 «сухих» скважин пришлось пробурить прежде, чем нашли второе в Астраханской области по запасам Еленовское газоконденсатное месторождение.

   В среднем, по всему миру коэффициент успешности поисков нефтяных и газовых месторождений составляет около 0,3. Таким образом, только каждый третий разбуренный объект оказывается месторождением. Но это только в среднем. Нередки и меньшие значения коэффициента успешности.

   Геологи имеют дело с природой, в которой не все связи объектов и явлений достаточно изучены. Кроме того, применяемая при поисках месторождений аппаратура еще далека от совершенства, а ее показания не всегда могут быть интерпретированы однозначно. 

      1. Методы поиска и разведки нефтяных и газовых месторождений

   Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа.

   В ходе поисково-разведочных работ применяются геологические, геофизические, гидрогеохимические методы, а также бурение скважин и их исследование.

   Геологические методы

   Проведение геологической съемки предшествует всем остальным видам поисковых работ. Геологический метод, осуществляется путем съемок различных масштабов и изучения естественных и искусственных обнажений полезного ископаемого, является необходимой, а иногда и основной частью в комплексе работ на всех стадиях поисков и разведки и нередко имеет решающее значение в понимании геологии изучаемого района, в обнаружении и оценке месторождений. Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. Для анализа коренных пород, укрытых современными наносами, роются шурфы глубиной до 3 м. А с тем,  чтобы получить представление о более глубоко залегающих породах бурят картировочные скважины глубиной до 600 м.

   Затем выполняются камеральные работы, т.е. обработка материалов, собранных в ходе предыдущего этапа. Их итогом являются геологическая карта и разрезы местности.

   Геофизические  методы

   К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

   При самом широком разнообразии геофизических методов, сейсморазведка остается наиболее информативным, по точности и детальности, и является основным методом при глубинных исследованиях и поисково-разведочных работах на нефть и газ.

   Сейсмическая разведка основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Волны могут создаваться одним из следующих способов:

    1. взрывом специальных зарядов в скважинах глубиной до 30 м;
    2. вибраторами;
    3. преобразователями взрывной энергии в механическую.

   Раньше в качестве источника упругих колебаний чаще всего использовали взрывы. Теперь их стали заменять вибраторами. Вибратор можно установить на грузовик и за рабочий день обследовать достаточно большой район. Кроме того, вибратор позволяет работать в густонаселенных районах, так как можно подобрать вибрации такой частоты, что они не воспринимаются человеческим ухом. Единственный недостаток этого способа – малая глубина исследований, не более 2-3 километров. Поэтому для более глубинных исследований применяют преобразователь взрывной энергии. Источником волн здесь по существу остается тот же взрыв. Но происходит он уже не в почве, как раньше, а в специальной взрывной камере. Взрывной импульс передается на грунт через стальную плиту, а вместо взрывчатки часто используют смесь пропана с кислородом. Все это, конечно, позволяет намного ускорить процесс зондирования недр.

   Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а, частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками (рис. 1) и записываются на самописцы.  
 
 
 
 

   

                      Рис. 1. Схема сейсмической разведки

   Расшифровывая затем полученные графики колебаний земной поверхности, специалисты определяют глубину залегания пород, отразивших волны, и угол их наклона. По этим данным строят карты подземного рельефа. Такой метод отраженных волн был предложен советским геологом В.С. Воюцким в 1923 году и получил широкое распространение во всем мире.

   Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а пески и песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

   Гравиметрический метод основан на изучении изменения силы тяжести на поверхности Земли от плотности горных пород. Известно, что если под поверхностью почвы находится горная порода малой плотности, например каменная соль, то и земное тяготение здесь несколько уменьшается. А вот плотные горные породы, такие, как, например, базальт или гранит, напротив, увеличивают силу тяжести. Эти изменения устанавливает специальный прибор – гравиметр. Один из его простейших вариантов – грузик, подвешенный на пружине. Тяготение увеличивается – пружина растягивается; это фиксируется указателем на шкале. Тяготение уменьшается, пружина соответственно сокращается.

   Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение мест с аномально низкой силой тяжести.

   Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета – это огромный магнит, вокруг которого расположено магнитное поле. В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200…300 м.

   Гидрогеохимические  методы

   К гидрохимическим относят газовую, люминесцетно-биту-монологическую, радиоактивную съемки и гидрохимический метод.

   Газовая съемка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовый вод, отобранных с глубины от 2 до 50 м. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность 10-5…10-6 %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов, например) или же быть связана с непромышленными залежами.

Информация о работе Поиск и разведка нефтяных и газовых месторождений