Объектом работы являются эксплуатационные скважины для освоения месторождений Западной Сибири

Автор работы: Пользователь скрыл имя, 02 Января 2015 в 16:51, курсовая работа

Описание работы

Тенденции развития технологии в последнее время направлены на минимизацию вредного воздействия на продуктивный пласт во время бурения, качественное крепление и цементирование, использование новых технологий для идеализации профиля ствола скважин, уменьшение вредного воздействия на окружающую среду во время бурения.

Содержание работы

Введение
1. Общая и геологическая часть
1.1 Географо-экономическая характеристика района работ
1.2 Геологические условия
1.3 Характеристика газонефтеводоносности месторождения
2. Технологическая часть
2.1 Выбор и обоснование способа бурения
2.2 Конструкция и профиль проектной скважины
2.2.1 Проектирование и обоснование конструкции скважины
2.2.2 Обоснование и расчёт профиля проектной скважины
2.3 Разработка режимов бурения
2.3.1 Обоснование класса и типоразмеров долот по интервалам бурения
2.3.2 Расчет осевой нагрузки на долото
2.3.3 Расчет частоты вращения долота
2.3.4 Обоснование и выбор очистного агента
2.3.5 Расчет необходимого расхода очистного агента
2.4 Разработка рецептур бурового раствора
2.5 Выбор и обоснование типа забойного двигателя
2.6 Гидравлический расчет промывки скважины
2.7 Режимы бурения при вскрытии продуктивных горизонтов
2.8 Обоснование критериев рациональной отработки долот
2.9 Разработка мероприятий по предупреждению осложнений и аварий при сооружении скважины
2.10 Проектирование и обоснование компоновки бурильной колонны и её расчет
2.11 Проектирование конструкции обсадных колонн из условия равнопрочности по длине
2.12 Расчёт параметров цементирования
2.13 Технология спуска обсадных колонн и цементирования
2.14.1 Вторичное вскрытие пласта
2.14.2 Вызов притока из пласта
2.15 Выбор и обоснование буровой установки, ее комплектование
3. Вспомогательные цехи и службы
3.1 Ремонтная база
3.2 Энергетическая база
3.3 Водные ресурсы и водоснабжение
3.4 Приготовление раствора
3.5 Транспорт
3.6 Связь и диспетчерская служба
3.7 Культурно-бытовое и медицинское обслуживание
4. Безопасность жизнедеятельности
4.1 Безопасность в рабочей зоне
4.2 Охрана окружающей среды
4.3 Чрезвычайные ситуации
5. Организационно-экономическая часть
5.1 Структура и организационные формы работы бурового предприятия Стрежевской филиал ЗАО " Сибирская сервисная компания " (СФ ЗАО "ССК")
5.2 Анализ основных технико-экономических показателей (ТЭП) и баланса рабочего времени буровых бригад
5.3 План организационно-технических мероприятий (ОТМ) по повышению ТЭП
5.4 Определение нормативной продолжительности строительства скважин
5.5 Расчет экономической эффективности разработанных ОТМ
6. Специальная часть
Заключение
Литература

Файлы: 1 файл

Диплом начало.docx

— 297.04 Кб (Скачать файл)

В качестве продавочной жидкости используется буровой раствор, объем которого определяется по формуле:

VПЖ = (∑ (p×d I2/4×l I)) ×KI м3, (2.115)

 

где dI - внутренний диаметр соответствующей секции обсадной колонны;

l I - длина соответствующей секции (без учета цементного стакана);

КI - коэффициент, учитывающий сжатие пузырьков воздуха в продавочной жидкости и деформацию обсадной колонны (КI= 1,03).

 

VПЖ = ( (3,14×0,13062/4×110) + (3,14×0,1322/4×2990)) ×1,03=43,2 м3.

 

Определяем тип и объем буферной жидкости.

Буферная жидкость закачивается в обсадную колонну перед тампонажной смесью и выполняет следующие функции:

Отделяет в затрубном пространстве тампонажную смесь от вышерасположенного бурового раствора, что препятствует их смешению. В противном случае при смешивании тампонажного и бурового растворов часто образуется трудно прокачиваемая смесь.

Очищает стенки скважины от глинистой корки, что в дальнейшем улучшает контакт цементного камня с породой.

Облегчает процесс вытеснения бурового раствора, обеспечивая большую степень замещения бурового раствора цементным.

Применение буферных жидкостей значительно повышает качество цементирования.

В качестве буферной жидкости используется двухпроцентный водный раствор триполифосфата натрия, удельный вес буферной жидкости составит 1,0×104Н/м3.

Объем буферной жидкости должен обеспечить выполнение вышеперечисленных функций. Практикой установлено, что минимально необходимая высота столба буферной жидкости в затрубном пространстве должна ориентировочно составлять 100 м на каждые 1000 м цементируемого интервала. Тогда минимальный объем буферной жидкости составит:

 

VБЖМИН=p/4× (DД2 - D2) ×K ×hБЖМИН м3. (2.116)

 

где hБЖМИН -минимально необходимая высота столба буферной жидкости, м.

 

VБЖМИН=3,14/4× (0,21592 - 0,1462) ×1,7 ×3100/100=1,05 м3

 

Так как qБР >qБЖ, то с увеличением столба буферной жидкости снижается гидростатическое давление и может произойти выброс. Поэтому находится максимальное количество закачиваемой в скважину буферной жидкости из условия отсутствия выброса:

 

VБЖМАКС=p/4× (DД2 - D2) ×K ×hБЖМИАКС м3, (2.117)

 

где hБЖМАКС - максимальная высота столба буферной жидкости в затрубном пространстве, м. Максимальная высота столба буферной жидкости в затрубном пространстве находится по формуле:

 

h БЖМАКС = (10-6×Н× qБР - PПЛ) / (10-6× (qБР -qБЖ) м. (2.118)

hБЖМАКС= (10-6×2825×1,08×104 - 28,5) / (10-6× (1,08×104 - 1,0×104) =2512 м.

 

По формуле (2.117) находится максимальный объем закачиваемой в затрубное пространство буферной жидкости:

 

VБЖМАКС=3,14/4× (0,21592 - 0,1462) ×1,7 ×2512=87м3.

 

Номинальный объем буферной жидкости должен находится в пределах между минимальным и максимальным значениями:

 

VБЖМИН<VБЖ<VБЖМАКС м3. (2.119)

 

Ориентировочно номинальный объем буферной жидкости может быть найден из выражения:

 

VБЖ =p/4× (DД2 - D2) ×K×hБЖ м3. (2.120)

 

где hБЖ - высота столба буферной жидкости и находится по выражению:

 

hБЖ = V× t м, (2.121)

 

где V-скорость восходящего потока равная 2 м/с;

t - время контакта буферной жидкости со стенками скважин равное 600 секунд.

Тогда по формулам (2.121) и (2.120):

 

hБЖ = 2× 600=1800м

VБЖ =3,14/4× (0,21592 - 0,1462) ×1,7 ×1800=61 м3

 

По условию (2.119)

 

1,05 < 61< 87, м3.

 

Так как условие (2.119) выполняется, то принимается объем буферной жидкости равным 61 м3.

Выбирается тип и количество цементировочного оборудования.

При цементировании обсадных колонн в качестве основных технических средств используются цементировочные агрегаты, предназначенные для доставки тампонажной смеси в затрубное пространство, и смесительные машины для ее приготовления. В качестве дополнительных средств используются станции контроля цементирования СКУПЦ - К, блок манифольдов, в зимнее время так же используются парогенераторная установка. Их характеристики представлены ниже [14].

Установка блока манифольдов УМК - 70К:

Максимальное давление, МПа:

в напорном коллекторе 70;

в раздающем коллекторе 2,5.

Количество отводов:

на напорном коллекторе 6;

на раздающем коллекторе 8;

на отходящих к устьевой головке 2.

Номинальный диаметр отводов, мм 50.

Гидроманипулятор, подъемный момент, кН·м 75.

Масса, кг 16600.

Парогенирирующая установка МПУ - 05/07:

На базе автомобиля КамАЗ - 43101 и Урал - 4320.

Производительность по пару, кг/час 500.

Температура пара, 0 С 170.

Давление пара, МПа 0,7.

Габаритные размеры, мм 8270х2500х3500.

Масса не более, кг 15100.

Определяем тип цементировочного агрегата.

Цементировочный агрегат должен обеспечить следующее давление:

РЦА ≥РЦГ/0,8 МПа, (2.122)

где РЦА - давление, развиваемое цементировочным агрегатом, МПа;

РЦГ - максимальное давление на цементировочной головке, равное гидравлическим сопротивлениям при цементировании обсадной колонны, МПа.

Максимальное давление на цементировочной головке можно записать в виде выражения:

 

РЦГ =DРГС +РГД+РСТ МПа, (2.123)

 

где DРГС - гидростатическое давление, возникающее из-за разности плотностей жидкости внутри колонны и затрубном пространстве, МПа;

РГД - давление, необходимое для преодоления гидродинамических сопротивлений при движении жидкости внутри колонны и затрубном пространстве, МПа;

РСТ - дополнительное давление, возникающее при посадке продавочной пробки на кольцо "стоп" (РСТ=2,0 МПа).

Разность давлений от составного столба жидкости за колонной РГСЗП и внутри колонны РГСТР равна гидростатическому давлению DРГС:

 

DРГС =10-6× (3105-450-30) × (1,53×104 - 1,08×104) =11,6 МПа

DРГС = РГСЗП - РГСТР =10-6× (L-hБР-hСТ) × (qТС-qБР) МПа. (2.124)

 

Гидродинамические сопротивления РГД определяется суммой сопротивлений при движении жидкости внутри обсадной колонны и в затрубном пространстве:

 

РГД =РГДТР+ РГДЗП МПа, (2.125)

 

где РГДТР - гидродинамические сопротивления при движении жидкости внутри обсадной колонны, МПа;

РГДЗП - гидродинамические сопротивления при движении жидкости в затрубном пространстве, МПа.

По формуле Дарси - Вейсбаха:

 

РГДТР= 10-6 ×lТР×qТР ×VТР2/ (2×g) × L/d МПа. (2.126)

РГДЗП= 10-6 ×lЗП×qЗП ×VЗП2/ (2×g) ×L/ (DД-D) ×K МПа, (2.127)

 

где lТР и lЗП - соответственно коэффициенты гидравлических сопротивлений в трубах и затрубном пространстве (lТР =0,02; lЗП=0,035);

qТР и qЗП - соответственно плотности прокачиваемой жидкости внутри колонны и в затрубном пространстве (qТР = qБР; qЗП = qСР), Н/м3;

VТР и VЗП - соответственно: скорости движения потока жидкости внутри труб и в затрубном пространстве (VЗП =1,5 м/с), м/с;

SЗП и SТР - соответственно площади затрубного пространства и внутренней полости трубы, м2;

DС, D, d - соответственно: диаметр скважины, наружный и внутренний обсадных труб.

Определяем скорость движения потока жидкости в затрубном пространстве по формуле:

 

VТР = VЗП × SЗП/SТР м/с. (2.128)

VТР = 1,5×0,038/0,014=4,07 м/с.

 

Таким образом, по формулам (2.126) и (2.127):

 

РГДТР= 10-6 ×0,02×1,08 × 104 ×4,082/ (2×9,8) ×3105/0,132=4,3 МПа.

РГДЗП= 10-6 ×0,035×1,36 × 104 ×1,52/ (2×9,8) ×3105/ (0,2159-0,146) ×1,7=1,3 МПа.

 

По формуле (2.125):

 

РГД=4,3+1,3=5,6 МПа.

 

Таким образом, по формуле (2.123) определяется максимальное давление на цементировочной головке:

 

РЦГ =11,6 +5,6+2,0=19,2 МПа.

 

Необходимое давление цементировочного агрегата определяется по условию (2.122):

 

РЦА ≥19,2/0,8=24 МПа.

 

Такое давление обеспечит цементировочный агрегат АЦ - 32, который имеет следующие характеристики:

Полезная мощность, квт 108.

Насос поршневой цементировочный НПЦ - 32.

максимальное давление, МПа 32;

максимальная подача, л/с 23.

Насос водяной ЦНС - 38 - 154;

максимальное давление, МПа 15;

максимальная подача, л/с 10.

Двигатель привода водяного насоса ГАЗ - 52А.

Емкость мерного бака, м3 6,4.

Емкость бака для затворения цемента, м3 0,25.

Масса, кг 16610.

Рассчитывается количество цементировочных агрегатов.

Количество цементировочных агрегатов должно обеспечить необходимую производительность закачки и продавки тампонажной смеси. В свою очередь необходимая производительность цементирования задается из двух условий:

Из условия создания требуемой скорости восходящего потока в затрубном пространстве;

Из условия заданного времени цементирования.

Руководящие документы рекомендуют при цементировании эксплуатационных колонн скорость восходящего потока равную 1,8…2,0 м/с.

Чтобы обеспечить рекомендуемую скорость, суммарная производительность цементировочных агрегатов должна составлять:

 

∑Q=SЗП×VВП м3/с, (2.129)

 

где SЗП - площадь затрубного пространства, м2;

VВП - скорость восходящего потока в затрубном пространстве, м/с.

 

∑Q=0,038×1,8=0,0684м3/с

 

Требуемое число цементировочных агрегатов составит:

 

nЦА =∑Q/qIV+1 (2.130)

 

где q - производительность одного агрегата на скорости, при диаметре втулок, обеспечивающих необходимое давление, м3/с;

1 - резервный агрегат

 

nЦА =0,0684/0,0145+1=5,7

 

Принимается число цементировочных агрегатов nЦА =6.

Исходя из условия заданного времени цементирования, находится потребная суммарная производительность цементировочных агрегатов:

∑Q= (VТС +VПЖ) / (0,75 ×TН. СХВ - TДОП) м3/с, (2.131)

 

где VТС и VПЖ - объемы тампонажной смеси и продавочной жидкости соответственно, м3;

TН. СХВ - время от затворения тампонажной смеси до начала ее схватывания (для цемента ПЦТ I - 100 TН. СХВ =6300 с), с;

TДОП - дополнительное время, необходимое для вывода смесительной машины на рабочий режим и освобождение верхней продавочной пробки (TДОП=600с), с.

 

∑Q= (84,6+43,2) / (0,75×6300 - 600) =0,031 м3/с

 

По формуле (2.130) находится требуемое число цементировочных агрегатов:

 

nЦА =0,031/0,0145 +1=3,07

 

Принимается число цементировочных агрегатов nЦА =4

Окончательное число цементировочных агрегатов принимается по наибольшему из полученных значений, то есть nЦА =6.

Выбираются смесительные машины.

Смесительные машины (агрегаты) предназначены для приготовления тампонажных смесей путем смешивания жидкости затворения и твердой фазы, транспортировки сухого порошка, а также могут быть использованы для приготовления глинистого раствора. Главными составными элементами смесительной машины являются бункер с загрузочным и подающим шнеками и гидросмесительная воронка.

Принимается цементосмесительная машина типа УС - 6 - 30, которая имеет следующие характеристики:

Транспортная грузоподъемность, т 18…20.

Вместимость бункера по сухому цементу, т 30.

Объем бункера, м3 20.

По количеству необходимого сухого порошка, затариваемого в смесительные машины, их количество определяется из выражения:

 

nсм =∑G/G1, (2.132)

 

где ∑G - суммарное количество сухого порошка, необходимого для проведения цементирования, т;

G1 - грузоподъемность одной смесительной машины, т.

 

nсм =80,5/20=4,025

 

Принимаем nсм =5.

Расчетные данные, полученные в этом разделе, заносятся в паспорт крепления скважины.

Рассчитывается технологический режим цементирования скважины.

В процессе цементирования в различные периоды времени давление, необходимое для прокачивания жидкостей, не остается постоянным. Отсюда возникает задача расчета давлений на цементировочной головке для разных этапов цементирования и подбора развиваемых агрегатом давлений, то есть подбора скоростей работы агрегата на соответствующих этапах.

Работу цементировочных агрегатов на различных скоростях можно определить, построив график давлений на цементировочной головке в реальных значениях.

Так как объем тампонажной смеси больше внутреннего объема, то на графике выделяются три характерные точки А, Б, С, значения которых определяются в координатах "давление - объем" рис.2.7

Точка А соответствует началу закачки тампонажной смеси (закачка буферной жидкости в данном случае не учитывается). Координата "давление" будет соответствовать гидродинамическим сопротивлениям, то есть РАЦГ=РГД=5,6 МПа.

Точка Б означает, что обсадная колонна заполнена тампонажной смесью на весь объем. От сюда следует, что объем для точки Б равен внутреннему объему обсадной колонны VБ =VВН =42,4 м3. Давление в этой точке будет минимальным и равным:

 

РБЦГ=РГД - DРГС МПа (2.133)

РБЦГ =5,6 - 11,6 = - 6 МПа.

 

Точка В соответствует концу продавки тампонажной смеси. Объем в этой точке равен суммарному объему закаченной тампонажной смеси и продавочной жидкости:

 

VВ =VТС+ VПЖ м3 (2.134)

VВ =84,6+43,6 =127,8 м3.

 

Давление в точке В соответствует максимальному давлению в конце продавки (без учета давления для получения сигнала "стоп"):

 

РВЦГ=РГД+ DРГС МПа (2.135)

РВЦГ =5,6+11,6=17,2 МПа.

 

Помимо характерных точек выделяются также и вспомогательные точки, характеризующие процесс цементирования с применением конкретного цементировочного оборудования и обусловленный исходными значениями.

Таких точек выделено пять: точка 1 соответствует началу работы одного агрегата на IV скорости по закачке в скважину чистого цементного раствора, точка 2 соответствует началу работы агрегатов на IV скорости по закачке продавочной жидкости, точка 3 соответствует началу работы агрегатов на III скорости по закачке продавочной жидкости, точка 4 соответствует началу работы агрегатов на II скорости по закачке продавочной жидкости, точка 5 соответствует началу работы одного агрегата на II скорости по продавке 2% от объема продавочной жидкости.

По графику определяем объемы тампонажной смеси и продавочной жидкости закачиваемые при разных режимах работы цементировочных агрегатов.

При цементировании скважины используем цементировочные агрегаты АЦ-32 с диаметром втулок поршневого цементировочного насоса НПЦ-32 равным 125 мм. Характеристика работы агрегата, имеющего втулки такого диаметра приведены в табл.2.15.

При расчете времени цементирования и времени начала схватывания тампонажной смеси необходимо соблюдение условия:

 

∑T+ TДОП <0,75 ×TН. СХВ сек, (2.136)

 

где ∑T - время закачки тампонажной смеси и продавочной жидкости.

Время закачки порции тампонажной смеси на определенной скорости работы цементировочного агрегата определяется по формуле:

Информация о работе Объектом работы являются эксплуатационные скважины для освоения месторождений Западной Сибири