Автор работы: Пользователь скрыл имя, 23 Апреля 2010 в 01:18, Не определен
Научные открытия
1.космонавтика
2.радиоэлектроника
3.кибернетика
4.медицина
5.ядерная энергетика
6.химия
В 1935 г. И. В. Курчатов с группой сотрудников открыли явление ядерной изомерии искусственных радиоактивных атомных ядер и разработали теорию этого явления.
В 1936 г. Я. И. Френкель предложил капельную модель ядра и ввел термодинамические понятия в ядерную физику, выдвинул первую теорию ядерного деления.
В 1938 г. О. Ган и Ф. Штрассман, повторяя опыты Ферми, обнаружили, что в облученном нейтронами уране появляются элементы, стоящие в середине периодической системы элементов Менделеева и что при попадании нейтрона в ядро урана ядро разваливается — делится па два меньших ядра.
В 1939 г. Ю. Б. Харитон и Я. Б. Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Оказалось, что энергия, выделяющаяся при расщеплении 1 кг урана, равна той, которая получается при сжигании 2 500 000 кг самого лучшего каменного угля.
В 1940 г. Г. Н. Флеров и К. А. Петржак открыли спонтанное деление ядер урана, т. е. доказали, что ядра урана могут самопроизвольно распадаться.
В 1940 г. Ю. Б. Харитон и Я. Б. Зельдович предложили расчет цепной реакции деления ядер урана, установив, таким образом, принципиальную возможность ее осуществления. В статье «Кинетика цепного распада урана» (Экспериментальная и теоретическая физика, 1940, т. 10) они писали: «. . . смешивая уран с веществами, обладающими малым сечением захвата (например с тяжелой водой), либо обогащая уран изотопом U, которому приписывается распад под действием медленных нейтронов, окажется возможным создание условий цепного распада урана посредством разветвляющихся цепей, при котором сколь угодно слабое облучение нейтронами приведет к мощному развитию ядерной реакции. . . ». И далее «. . . молярная теплота ядерной реакции деления урана в 5-Ю7 раз превышает теплотворную способность угля. . . ». Проблемы ядерной физики давно занимали умы советских ученых. Еще в 1920 г. в стране была создана так называемая Атомная комиссия. В 1932 г. в Ленинградском физико-техническом институте была образована специальная группа по ядру. Руководителем группы стал А. Ф. Иоффе, его заместителем — И. В. Курчатов.
В сентябре 1937 г. в Москве состоялась Вторая всесоюзная конференция по атомному ядру, затем последовали совещания в 1938, 1939 и в 1940 гг. Непременным организатором и участником этих совещаний был И. В. Курчатов. На совещании по атомному ядру в ноябре 1940 г. Курчатов обсуждал конкретные пути осуществления цепной ядерной реакции, опираясь, в частности, на теоретические расчеты Ю. Б. Харитона и Я. Б. Зельдовича. Речь шла о создании уранового котла.
Начиная с 1935 г. советские ученые смогли приступить к научно-исследовательской работе в области ядерной физики на крупных физических установках. Так, в 1935 г. в Ленинграде был пущен в эксплуатацию первый на европейском континенте электромагнитный резонансный ускоритель заряженных частиц — циклотрон на энергию 6 млн. электрон-вольт. В электромагнитных полях циклотрона искусственно увеличивается скорость движения частиц (электронов, протонов и др.) и соответственно возрастает их кинетическая энергия. Различают циклические ускорители, в которых частицы движутся по траектории, близкой к окружности — циклотроны, синхротроны, фазотроны, и линейные ускорители, в которых движение частиц осуществляется по траекториям, близким к прямой линии. Затем по инициативе И. В. Курчатова началось проектирование, а потом и сооружение более крупного циклотрона на 12 МэВ. Но закончить его не удалось, введен в действие он был уже после Великой Отечественной войны.
Перечень научных открытий в области ядерной физики можно было бы продолжить и дальше, но все это можно найти в других научных и научно-популярных книгах. Здесь же хочется подчеркнуть, что период с 1932 по 1940 г. был очень плодотворным для советских физиков. Работы И. В. Курчатова, Я. И. Френкеля, Ю. Б. Харитона, Я. Б. Зельдовича, Д. Д. Иваненко, Г. Н. Флерова, К. А. Петржака, о которых говорилось выше, а также А. И. Алиханова. А. И. Алиханяна, Л. А. Арцимовича, Д. В. Скобельцына, В. Г. Хлопина, Л. В. Мысовского, а также работы Н. Н. Семенова по исследованию механизма химических реакций и теории разветвленных цепных химических реакций и многих других отечественных ученых приблизили практическое осуществление цепной реакции деления ядер урана. В этот период советские ученые опубликовали более 100 работ по ядерной физике. Коллективы институтов в Ленинграде, Москве, Харькове, Свердловске выполнили много интересных работ, приоткрывших тайну цепной реакции деления ядер атомов.
В Советском Союзе все работы, связанные с расщеплением атомного ядра, были прерваны с началом войны и вновь возобновились лишь в середине 1943 г. , но уже в декабре 1946 г. в Москве на территории Института атомной энергии (носящего сейчас имя его основателя И. В. Курчатова) был введен в действие первый в Европе и Азии исследовательский ядерный реактор. В августе 1949 г. было проведено испытание атомной бомбы, а в августе 1953 г. — водородной. Советские ученые овладели тайнами ядерной энергии, лишив США монополии на ядерное оружие.
Но создавая ядерное оружие, советские специалисты думали об использовании ядерной энергии в интересах народного хозяйства, промышленности, науки, медицины и других областей человеческой деятельности. В декабре 1946 г. в СССР был пущен первый в Европе ядерный реактор. В июне 1954 г. вошла в строй первая в мире атомная электростанция в подмосковном городе Обнинске. В 1959 г. спущен на воду первый в мире атомный ледокол «Ленин». Таким образом, ядерная физика создала научную основу атомной технике, а атомная техника в свою очередь явилась фундаментом ядерной энергетики, которая, опираясь на ядерную науку и технику, стала в настоящее время развитой отраслью электроэнергетического производства.
Исторические решения XXVI съезда КПСС определили пути развития народного хозяйства страны на ближайшие годы и на дальнюю перспективу. Был также намечен ход развития ядерной науки и техники, в том числе ядерной энергетики как вполне определившейся самостоятельной отрасли электроэнергетического производства.
Ядерная
энергетика — очень молодая отрасль
науки и техники. Первая в мире
атомная электростанция (АЭС) в г.
Обнинске Калужской области вошла в строй
всего четверть века назад: 27 июня 1954 г.
она выдала электрическую энергию в Московскую
энергосеть. За это время ядерная энергетика
выросла, возмужала и вышла на широкую
дорогу промышленного производства электрической
энергии во многих странах мира — Советском
Союзе, США, Англии, Франции, Канаде, Италии,
ФРГ, Японии, Швеции, Чехословакии, ГДР,
Болгарии, Швейцарии, Испании, Индии, Пакистане,
Аргентине и др. |На январь 1981 г. во всем
мире введено более 250 атомных электростанций
(блоков) установленной мощностью около
140 млн. кВт. Ни одна отрасль техники не
развивалась так быстро, как ядерная энергетика.
Обычным электростанциям понадобилось
100 лет, чтобы достичь такого уровня инженерной
техники и эксплуатации, какого достигла
уже к 1975 г. ядерная энергетика.
6. ХИМИЯ
Великий русский ученый Дмитрий Иванович Менделеев открыл так называемый периодический закон химических элементов, согласно которому все химические элементы определённым образом связаны между собой. Это было величайшее открытие одного из основных законов естествознания.
Мысль о химическом сродстве элементов, которая пришла еще в годы студенчества, опять волновала его. Он был абсолютно твердо убежден, что непременно должен существовать некий закон - властный, неумолимый, который и определяет это сродство или различие элементов, населяющих мир.
Сколько до него было попыток - наивных, надуманных - найти этот закон, повинуясь ему, расставить все элементы по стройной системе... В то время химики открыли и «обмерили» 64 элемента, знали их атомные веса, так что уже был материал для работы. Не было только человека, который сумел бы проникнуть в эту тайну, лежащую, как казалось, где-то неподалеку и тем не менее недосягаемую.
Французский химик Шанкуртуа искал закономерность, расположив элементы по винтовой нарезке, нанесенной на стоящий цилиндр. Все напрасно.
Английский химик Ньюлендс, человек, вероятно, утонченной натуры,
напряженно искал разгадку с помощью музыки. Он верил, что те соотношения, которые существуют между элементами, похожи на соотношения между музыкальным тоном и его октавой. Ньюлендс построил-таки свою систему, искусственно впихивая в нее элементы, подстругивая их под те размеры, которые сам же и уготовил. Система была, но системы элементов не было. Ньюлендсу пришлось пережить пренеприятные минуты, когда председатель британского съезда естествоиспытателей спросил его, не пряча иронии: «Не пробовал ли уважаемый джентльмен расположить элементы по алфавиту и не усмотрел ли он при этом каких-либо закономерностей?»
Менделеев смотрел в самую суть явлений и не пытался искать какую-то внешнюю связь, объединяющую все элементы в фундаменте мироздания. Он пытался понять - что их связывает и что определяет их свойства. Менделеев расположил элементы по возрастанию их атомного веса и стал нащупывать закономерность между атомным весом и другими химическими свойствами элементов. Он пытался понять способность элементов присоединять к себе атомы сородичей или отдавать свои.
Он вооружился ворохом визитных карточек и написал на одной стороне название элемента, а на другой - его атомный вес и формулы его некоторых важнейших соединений. Он снова и снова перекладывал эти карточки, укладывая их по свойствам элементов. И в его сознании всплывали какие-то новые закономерности, и он со знакомым волнением, предшествующим открытию, осторожно продвигался дальше и дальше. Часами он сидел, склонившись над своим столом, снова и снова вглядываясь в записи, и ощущал, как начинала кружиться от напряжения голова и как глаза застилала дрожащая пелена...
Говорят, что во сне к нему пришло озарение и что ночью ему привиделось, как, в каком порядке надо разложить те карточки, чтобы все легло по своим местам по закону природы. Может быть. Мозг человека всегда бодрствует. Но шел-то Менделеев к этому прозрению годами! Он продвигался осмысленно, заранее намечая и рассчитывая каждый свой очередной шаг. Может, и было то озарение, но его нельзя назвать случайным.
Менделеев нашел связь даже между самыми непохожими элементами. Он обнаружил, что свойства элементов, если их разместить в порядке возрастания атомных весов, через правильные промежутки повторяются.
Менделеев понимал: случайностью это быть не могло. Тогда он сделал последний – решающий шаг: расположил все элементы еще и по группам, объединив в отдельные семьи ближайших родственников. Он настолько ясно видел стройность созданной им системы, что, заметив отсутствие элемента между алюминием и титаном, оставил ему свободное место. Таких пустых клеток пришлось оставить еще две. Система Менделеева позволяла ему предвидеть открытие.
Первое из них последовало через четыре года. Элемент, для которого Менделеев оставил место и свойства, атомный вес которого он предсказал, вдруг объявился! Его звали Лекок де Буабодран.
Менделеев предсказал, еще оставляя для этого элемента место, что его плотность должна быть 5,9. А Буабодран утверждал: открытый им элемент имеет плотность 4,7. Менделеев, и в глаза-то не видевший новый элемент -тем это и удивительней, - заявил, что французский химик ошибся в расчетах. Но и Буабодран оказался упрямцем: он уверял, что был точен. Этот спор походил на какую-то игру, в которой участвовал магпрорицатель. Этот маг носил русское имя.
Чуть позже после дополнительных измерений выяснилось: Менделеев был
безоговорочно прав. Первый элемент, заполнивший пустое место в таблице, Буабодран назвал галлием в честь своей родины Франции. И никому тогда не пришло в голову дать ему имя человека, который предсказал существование этого элемента, человека, который раз и навсегда предопределил путь развития химии. Это сделали ученые двадцатого века. Имя Менделеева носит элемент, открытый советскими физиками.
Также
именно Менделеев изобрел так
называемый «пироколлодий» - порох.
ЗАКЛЮЧЕНИЕ
Таким
образом мы познакомились только
с некоторыми вершинами науки. К началу
XX века относятся первые попытки государств
координировать и регулировать научные
исследования, исходя из своих задач. Эти
общества и ассоциации играли большую
роль в национальной консолидации научных
сил и развитии информационных связей
между коллективами исследователей. Образовались
первые постоянно действующие международные
научные организации.
СПИСОК
ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ