Методы диагностики минералов

Автор работы: Пользователь скрыл имя, 17 Октября 2015 в 11:37, контрольная работа

Описание работы

По внутреннему строению минералы делятся на кристаллические (кухонная соль) и аморфные (опал). В минералах с кристаллическим строением элементарные частицы (атомы, молекулы) расположены в определенном направлении и на определенном расстоянии между собой, образуя кристаллическую решетку. В аморфном веществе указанные частицы расположены хаотически. От внутреннего строения минерала (кристаллического или аморфного) зависят его основные физические свойства (твердость, спайность, кристаллографическая внешняя форма и др.).

Файлы: 1 файл

Химичечкий состав.docx

— 1.06 Мб (Скачать файл)

Гидротермальные рудные месторождения характеризуются широким разнообразием минеральных ассоциаций, которые зависят, в первую очередь от состава гидротермальных растворов и состава вмещающих пород.

Рассмотрим наиболее распространенные типичные гидротермальные месторождения.

Кварц-вольфрамитовые, кварц-шеелитовые, кварц-молибденитовые, кварц-касситеритовые жилы наблюдаются в непосредственной близости или внутри гранитоидов (Забайкалье). Основным минералом таких жил является кварц, в массу которого вкраплены рудные минералы. В таких жилах может присутствовать флюорит, топаз, турмалин, берилл, полевые шпаты, слюды и различные сульфиды. Разнообразие минерального состава таких жил весьма велико.

Золотосодержащие кварцевые жилы чаще всего не содержат примесей других минералов, хотя в некоторых случаях (как, например, Березовское месторождение, Ю. Урал) содержат сульфиды – пирит, галенит, халькопирит, арсенопирит и др. Из нерудных минералов могут присутствовать в значительных количествах кальцит, барит, доломит.

Гидротермальные месторождения сульфидных руд являются наиболее распространенными (Урал). По своему минеральному составу они весьма разнообразны и различаются по промышленному содержанию в них того или иного металла: медные, свинцово-цинковые, полиметаллические, мышьяковые, ртутные, сурьмяные и др. Нерудные минералы чаще всего представлены кварцем и карбонатами.

Флюоритовые месторождения являются типично гидротермальными (Забайкалье). Флюорит как спутник встречается во многих гидротермальных и метасоматических месторождениях, однако в некоторых случаях при низкотемпературном гидротермальном процессе флюорит может образовывать самостоятельные месторождения. Сплошные массы флюорита иногда образуют концентрически-зональные агрегаты радиально-лучистого строения с различной окраской разных зон и отдельных кристаллов(фиолетовый, зеленый, розовый, молочно-белый). Встречаются и совершенно бесцветные прозрачные кристаллы. В ассоциации с флюоритом в небольших количествах может присутствовать пирит, марказит, халькопирит, галенит, кварц, кальцит, иногда гематит, барит, халцедон, адуляр и др.

Баритовые гидротермальные месторождения образуются не глубоко вблизи поверхности в условиях низких температур (месторождения Грузии). Наряду с преобладающим баритом могут присутствовать сульфиды (пирит, галенит, халькопирит, сфалерит и др.), сидерит, кварц, цеолиты, а иногда окислы железа – гематит.

 

  1. 25. Контактово-метасоматическое минералообразования

Этот тип процесса наиболее проявлен в контактовых областях, между интрузивной силикатной породой и вмещающей осадочной. Наиболее типичным метасоматическим процессом является скарнообразование.

1.1.4.3. Контактово-метасоматические  процессы

При внедрении магмы вмещающие породы в первую очередь испытывают прогрев, причем наиболее сильно тогда, когда магма кристаллизуется и отдает максимальное количество тепла. Прогрев сам по себе способен стимулировать многие реакции во вмещающих породах, но особенно активно изменения протекают, если вмещающие породы резко отличны по химизму от магматического расплава и продуктов его кристаллизации. По законам термодинамики реакции будут протекать в направлении сглаживания различий химизма контактирующих сред, т. е. начнется обмен компонентами между магмой (а затем - магматической породой) и вмещающей породой. Так как вмещающая порода при этом остается в твердом состоянии, то такой обмен возможен лишь путем метасоматоза - реакций замещения. Поскольку они идут на контакте двух сред, такие процессы и названы контактово-метасоматическими. Мы остановимся на характеристике двух из них – фенитизации и скарнообразовании.

 

  1. 27.28 билеты Скарнообразование

Скарны - это породы, которые образуются метасоматическим путем на контакте карбонатных вмещающих пород с магматическими, чаще всего кислыми, гранитоидными породами.

Следует отметить, что скарны и скарноподобные породы могут возникать и при внедрении ультраосновных, основных, щелочных магм, и даже на контакте карбонатных и немагматических силикатных толщ, но все-таки наиболее типичны случаи внедрения в карбонатные породы гранитоидных магм, поскольку именно тогда проявляется контрастность контактирующих сред по химизму, а значит, наиболее активно идет обмен компонентами. Такой обмен вызывает изменение минерального состава пород и в приконтактовой части гранитного массива (эндоскарны), и особенно - в приконтактовой части со стороны вмещающих пород (экзоскарны) (рис. 17). Поскольку он происходит путем замещения обеих пород, то к нему приложим термин биметасоматоз (предложен Д. С. Коржинским). Считают, что скарны образуются на глубине 3–7 км и образованию их способствует возникновение трещин контракции (усадки объема при остывании магматических пород).

В зависимости от состава вмещающих карбонатных толщ образуются скарны двух типов - магнезиальные и известковые.

1. Магнезиальные скарны образуются на контакте с магнезиальными карбонатными толщами - доломитами, доломитовыми мраморами - CaMg(CO3)2. Поэтому для них характерна ассоциация минералов, богатых магнием, или двойных солей Са и Mg:

 

форстерит    Fo          Mg2[SiO4],

флогопит      Phl         KMg3[AlSi3O10](OH,F)2,

шпинель       Sp          MgAl2O4,

диопсид        Di           CaMg[Si2O6],

энстатит       En          Mg2[Si2O6],

минералы группы хондродита-гумита -

Mg2[SiO4]×Mg(F,OH)2-4Mg2[SiO4]×Mg(F,OH)2,

тремолит      Trem     Ca2Mg5[Si4O11]2(OH)2,

иногда - магнезиальный турмалин  NaMg3Al6[Si6O18](BO3)3(OH,F)3+1.

2. Известковые (известковистые) скарны образуются на контакте с мраморизованными известняками и мраморами, поэтому здесь преобладают кальциевые силикаты:

волластонит              Voll                       Ca3[Si3O9],

гроссуляр-андрадит               Gross-Andr          Ca3Al2[SiO4]3 - Ca3Fe2[SiO4]3,

диопсид-геденбергит Di-Häd              CaMg[Si2O6] - CaFe[Si2O6],

везувиан                      Ves                    Ca10(Mg,Fe)2Al4[SiO4][Si2O7]2(OH,F)4,

эпидот                         Ep                         Ca2FeAl2[SiO4][Si2O7]О(OH),

тремолит                     Trem                    Ca2Mg5[Si4O11]2(OH)2.

Температура скарнообразования различна: для магнезиальных - 850–650 оС, известковых - 800–400 оС. Непосредственно у контакта при максимальном прогреве температура может подниматься до 1000 оС.

По мере остывания зоны контакта, вследствие контракции скарнированных пород, развивается трещиноватость, и в трещины начинают поступать сначала пневматолитово-гидротермальные, а затем – гидротермальные растворы, которые отделяются при кристаллизации магматических пород. Растворы активно изменяют более ранние скарновые минералы, поэтому в образовании скарнов различают собственно скарновый этап (подразделяемый на раннескарновый и позднескарновый) и этап более поздних наложений, главным образом гидротермальных. Эти наложения приводят не только к перекристаллизации скарновых минералов и замещению раннескарновых минералов позднескарновыми, но и к отложению в скарнах гидротермальных минералов, компоненты которых приносятся растворами из магматического очага. Среди них такие очень важные в промышленном отношении, как шеелит Ca[WO4], молибденит MoS2, минералы Be, Sn, Fe, Co, Pb + Zn, Cu, самородное Au.

По характеру рудной специализации среди скарнов выделяют железорудные скарны (магнетитовые) – г. Магнитная, Высокая, Благодать, Верблюжка (Урал), Соколово-Сарбайское м-е (Тургайский прогиб), скарны Горной Шории; меднорудные скарны (с халькопиритом, борнитом, халькозином) – Хакасия; вольфрамоносные скарны (с шеелитом) – Майхура, Чорух-Дайрон, Лянгар и др. (Средняя Азия), Тырныауз (Кавказ); скарны с полиметаллическим оруденением (сфалеритом, галенитом) – Тетюхе или Дальнегорское (Приморье); скарны с кобальтовым оруденением(кобальтином) – Дашкесан (Азербайджан); золоторудные скарны – Горная Шория и Алтай; бороносные скарны (с людвигитом (Mg,Fe)2Fe[BO3]O2) – Якутия, Горная Шория.

  1. 29 билет. Грейзенизация

 

Грейзены - это метасоматические постмагматические породы, которые образуются при воздействии пневматолитово-гидротермальных растворов, отделившихся при кристаллизации гранитной магмы, на алюмосиликатные породы, в первую очередь - сами гранитоиды.

Определение очень похожее на определение апогранитов. И там метасоматоз, и здесь объектом изменения являются ранее кристаллизовавшиеся граниты. В чем разница этих процессов?

Во-первых, подчеркивается пневматолитово-гидротермальный характер изменения: пнеума означает газ, то есть часть реакций может идти под воздействием газообразных летучих компонентов - таких, как НF, НCl, B2О3. Это очень сильные реагенты, создающие сильнокислую среду, которая способствует глубокой переработке пород с явлениями растворения и выноса (выщелачивания) даже таких стойких минералов, как кварц (SiO2 + 4HF ® SiF4 + 2H2O). Во-вторых, грейзенизация происходит при высокой активности калия, и потому при тех же исходных гранитоидах возникает иная ассоциация минералов: кварц легко растворяется и переотлагается, хотя общее его количество возрастает, что видно из реакции замещения калишпата мусковитом и топазом: калишпат                           мусковит           топаз        кварц

                                                                     5K[AlSi3O8] + 3HF ® KAl2[AlSi3O10](OH,F)2 + Al2F2[SiO4] + 11SiO2 +2K2O + H2O.

При грейзенизации самым чувствительным минералом гранита является биотит - он в первую очередь замещается мусковитом; следом за ним мусковитом же замещаются полевые шпаты (калишпат, реакция приведена выше, и кислый плагиоклаз, кальций которого тут же связывается фтором с образованием флюорита). Таким образом, в результате грейзенизации гранит превращается в кварц-мусковитовый агрегат - породу серого цвета (грей - серый), содержащую минералы, богатые летучими: фтором - топаз, флюорит, мусковит; бором - турмалин. Вместе с летучими при грейзенизации приносятся такие элементы, как Sn, W, Be, Mo, Bi, Ta, Nb. Поэтому в грейзенах наряду с отмеченными минералами образуются касситерит SnO2, танталит–колумбит (Fe,Mn)(Nb,Ta)2O6, берилл Al2{Be3[Si6O18]}, вольфрамит (Fe,Mn)WO4, молибденит MoS2, висмутин Bi2S3, арсенопирит FeAsS.

Так же, как и апограниты, грейзены образуются преимущественно в апикальных частях гранитных массивов и нередко - во вмещающих граниты породах, если это породы алюмосиликатные (сланцы, гнейсы). При грейзенизации нередко возникают штокверки - неправильная сеть, сплетение кварцевых жил, окруженных грейзенизированной породой. Эти жилы представляют собой бывшие трещины, по которым происходило движение пневматолитово-гидротермальных растворов, а затем они заполнялись кварцем, мусковитом, частично даже калишпатом, переотложенным из окружающих участков пород, подвергшихся грейзенизации. Поэтому такие жилы содержат те же характерные минералы грейзенов - топаз, берилл, флюорит, турмалин и все остальные, упомянутые выше рудные минералы. Они являются свидетельством того, что высокотемпературный (600–375 оС) процесс грейзенизации во времени без перерыва сменяется высокотемпературным (375–250 оС) гидротермальным процессом.

Остановимся на временном соотношении грейзенов и апогранитов. Для этого надо принять во внимание зависимость активности K и Na от кислот ности-щелочности среды и температуры (рис. 15). Из этого графика видно, что К и Na попеременно активны, как это уже было отмечено для апогранитов. Но минералы при этом возникают различные. Образование большого количества мусковита происходит после альбитизации в более кислой среде.

Действительно, нередко грейзены накладываются на апограниты, и общую последовательность уже рассмотренных магматогенных процессов можно выразить так: кристаллизация гранитов ® пегматиты ® апограниты ® грейзены ® гидротермальный процесс. Эта последовательность отвечает общему снижению температуры.

Однако, прежде чем перейти к следующему по температуре гидротермальному процессу, остановимся на явлениях, сопровождающих кристаллизацию магмы, которые происходят во вмещающих массив породах и в его приконтактовой части.

  1. 30,36 билет Процессы осадконакопления

В зависимости от того, идет ли механическое накопление переносимых минералов, или имеют место еще и химические процессы новообразования минералов, различают несколько типов продуктов осадконакопления.

Механические осадки

Как показывает название, здесь речь идет не столько о минералообразовании, сколько о сохранении и накоплении устойчивых в поверхностных условиях минералов. К таковым относятся кварц, каолинит, рутил, ильменит, золото, платина и платиноиды, алмаз, монацит, циркон, танталит-колумбит и некоторые другие. В зависимости от механической прочности и - особенно - плотности происходит разделение этих минералов. При этом могут возникать, например, кварцевые пески или залежи так называемых переотложенных каолинитов, последние наиболее ценятся за чистоту и однородность и представляют собой высококачественное сырье; таким же путем возникают переотложенные бокситы - скопления минералов алюминия; за счет дифференциации возникают речные и морские россыпи.

Инфильтраты

Образование инфильтрационных (от «инфильтрация» - просачивание) минералов идет путем отложения вещества, растворенного в поверхностных водах, в пустотах или пористых породах. Причиной такого отложения является реакция этих вод, обогащенных растворимыми компонентами пород, через которые воды «фильтровались», с породами, отличными по составу. Часто такими породами являются известняки с их карстовыми полостями или пористые песчаники. Например, при образовании зоны окисления в растворах образуются легкорастворимые ZnSO4и CuSO4. Иногда растворы с этими сульфатами выносятся за пределы зоны окисления и, попадая в карбонатную среду или силикатно-карбонатные породы, реагируют с образованием малорастворимых соединений типа:

Информация о работе Методы диагностики минералов