Автор работы: Пользователь скрыл имя, 23 Апреля 2012 в 19:43, лекция
Первичная пустотность присуща всем без исключения осадочным породам, в которых встречаются скопления нефти и газа – это прежде всего межзерновые поры, пространства между крупными остатками раковин и т.п. К вторичным пустотам относятся поры каверны и трещины, образовавшиеся в процессе доломитизации известняков и выщелачивания породы циркулирующими водами, а также трещины возникшие в результате тектонических движений. Отмечается заметное изменение пористости в зонах водонефтяных контактов.
где k – коффициент проницаемости; m – коэффициент динамической пористостости; f – коэффициент характеризующий форму сечения каналов; Т - гидравлическая извилистость каналов; S – удельная поверхность фильтрующих каналов.
Различают абсолютную (общую), эффективную (фазовую) и относительную проницаемость горной породы.
Абсолютная проницаемость характеризует физические свойства породы, т. е. природу самой среды.
Эффективная проницаемость характеризует способность среды пропускать через себя жидкость (нефть, воду) или газ в зависимости от их соотношения между собой.
Относительной проницаемостью называется отношение эффективной проницаемости к абсолютной проницаемости.
Наибольшей, приближающейся
по значению к абсолютной проницаемость
пород бывает в тех случаях, когда
по порам движется чистая нефть. В
тех случаях, когда по порам движутся
и нефть, и газ в отдельности
(две фазы), эффективная проницаемость
для нефти, или, как ее еще называют,
фазовая проницаемость, начинает уменьшаться.
Когда же по порам породы движутся
три фазы — нефть, газ, вода, —
эффективная (фазовая) проницаемость
для нефти еще более
Например, если содержание воды составляет 80%, фазовая проницаемость для керосина снижается до нуля, т. е. через пористую породу движется только чистая вода.
Проницаемость горных пород зависит от следующих основных причин:
1) от размера поперечного сечения пор (трубок). Последний же зависит от размеров зерен, плотности их укладки, отсортированности и степени цементации. Следовательно, проницаемость горных пород также обусловлена этими четырьмя факторами.
Однако в отличие от
пористости, которая при прочих равных
условиях не зависит от величины зерен,
слагающих породу, проницаемость
непосредственно связана с
Если в породе очень много сверхкапиллярных пор, через которые легче всего может двигаться жидкость, то такая порода относится к категории хорошо проницаемых.
В субкапиллярных порах движение жидкости встречает исключительно большое сопротивление, и потому породы, обладающие такими порами, практически являются непроницаемыми или мало проницаемыми;
2) от формы пор. Чем сложнее их конфигурация, тем больше площадь соприкосновения нефти, воды или газа с зернами породы, тем больше проявления сил, тормозящих движение жидкости, и, следовательно, тем меньше проницаемость такой породы;
3) от характера сообщения между порами. Если отдельные поры сообщаются друг с другом плохо, т. е. в породе отдельные системы пор разобщены, проницаемость такой породы резко сокращается;
4) от трещиноватости породы. По трещинам, в особенности когда они имеют большие размеры (сверхкапиллярные), движение жидкости проходит легко. Если даже общая масса породы имеет плохую проницаемость, то наличие многочисленных трещин сверхкапиллярного типа способствует увеличению проницаемости такой породы, так как по ним возможно движение жидкости или газа;
5) от минералогического состава пород. Известно, что одна и та же жидкость смачивает различные минералы по-разному. Особенно важное значение это обстоятельство имеет в тех случаях, когда порода обладает капиллярными и субкапиллярными порами. В субкапиллярных и капиллярных порах, где сильно развиты капиллярные силы взаимодействия молекул жидкости с молекулами поверхности капилляра, качественный состав породы, а также свойства самой жидкости, находящейся в порах, имеют исключительно важное значение.
2)своиства пластовых флюидов.
Свойства и состояние УВ зависят от их состава, давления и температуры. В залежах они могут находиться в жидком и газообразном состоянии или в виде газожидкостных смесей. В процессе разработки залежей в пластах и при подъеме на поверхность давление и температура непрерывно меняются, что сопровождается соответствующими изменениями состава газовой и жидкой фаз и переходом УВ из одной фазы в другую. Необходимо знать закономерности фазовых переходов, состояние и свойства УВ при различных условиях и учитывать их при подсчете запасов, проектировании и регулировании разработки проектировании и эксплуатации систем сбора и транспорта нефти и газа.
Нефть и газ представляют собой смесь УВ преимущественно метанового (парафинового) (СnН2n+2), нафтенового (CnH2n) и в меньшем количестве ароматического (CnH2n-6) рядов. По физическому состоянию в поверхностных условиях УВ от СН4 до С4Н10—газы; от С5Н12 до С16Н34—жидкости и от С17Н34 до С35Н72 и выше — твердые вещества, называемые парафинами и церезинами.
При большом количестве газа в пласте он может располагаться над нефтью в виде газовой шапки в повышенной части структуры. При этом часть жидких УВ нефти будет находиться в виде паров также и в газовой шапке. При высоком давлении в пласте плотность газа становится весьма значительной (приближающейся по величине к плотности легких углеводородных жидкостей). В этих условиях в сжатом газе растворяются значительные количества легкой нефти (С5Н12+С6Н14) подобно тому, как в бензине или других жидких УВ растворяются нефть и тяжелые битумы. В результате нефть иногда оказывается полностью растворенной в сжатом газе. При извлечении такого газа из залежи на поверхность в результате снижения давления и температуры растворенные в нем УВ конденсируются и выпадают в виде конденсата.
Если же количество газа в залежи по сравнению с количеством нефти мало, а давление достаточно высокое, газ полностью растворяется в нефти и тогда газонефтяная смесь находится в пласте в жидком состоянии.
С учетом сказанного в зависимости
от условий залегания и