Геофизические методы исследования скважин и скваженная аппаратура

Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:20, Не определен

Описание работы

Курсовая

Файлы: 1 файл

18701_kursovaya_rabota_geofizicheskie_metody_issledovaniya_skvazhi.doc

— 1.11 Мб (Скачать файл)

  В нормальных условиях (при отсутствии “работающих” пластов) сопротивление промывочной жидкости плавно увеличивается с уменьшением глубины (с уменьшением температуры). Удельное сопротивление стандартного глинистого раствора с плотностью порядка 1.10 - 1.20 г/см3 на глубине 1700 м примерно равно 2.5 Ом*м, на глубине 2500 м - примерно 1.5 Ом*м.

  Для проведения резистивиметрии используются следующие скважинные приборы:

  - ЭК-1 (см. БК). 
 

  6. Индукционный каротаж (ИК). 

        Индукционный каротаж относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в интервалах стандартного каротажа, по всему открытому стволу (перекрывая предыдущие замеры ИК по открытому стволу). 

  Физические основы метода. 

  Сущность метода заключается в следующем. При проведении индукционного каротажа (ИК) изучается удельная электрическая проводимость горных пород посредством индуцированных (наведенных) токов. Для этого в скважину опускается прибор (зонд) имеющий в своем составе генераторную (Г) и измерительную (И) катушки. Расстояние между генераторной и измерительной называется длиной зонда.

  При пропускании через излучающую катушку переменного тока частотой, вырабатываемого генератором, вокруг катушки и в окружающей среде создается переменное магнитное поле. Это поле создает в свою очередь в окружающей среде переменные токи (рис.11).  

  

  Рис.11 

  При проведение измерений в генераторной катушке с помощью переменного  тока устанавливается переменное магнитное  поле.  Согласно закону Фарадея, в  это время в горной породе возникает  электромагнитные вихревые токи, которые  фиксируются измерительной катушкой зонда. Величина вихревых токов возникающих в горной породе зависит от величины её удельной электропроводности.

  Чем выше электропроводность среды, тем больше величина ЭДС вихревых токов. В свою очередь, магнитное поле вихревых токов индуцирует в приемной катушке скважинного прибора ЭДС, представляющую собой векторную сумму активной составляющей, совпадающей по фазе с током питания генераторной катушки, и реактивной составляющей, сдвинутой на 90° относительно питающего тока. С ростом электропроводности среды ЭДС активного сигнала увеличивается медленнее и по более сложному закону. Нарушение пропорциональности между активным сигналом и электропроводностью среды связано со взаимодействием вихревых токов. Это явление называется скин-эффектом. Чем выше частота тока и электропроводность среды, тем значительнее взаимодействие вихревых токов и, следовательно, существеннее влияние скин-эффекта на показания индукционного метода.

  Для снижения влияния скважины, зоны проникновения и вмещающих пород на результаты ИК используют фокусировку электромагнитного поля. Для этого применяют многокатушечные фокусирующие зонды, которые рассматриваются как совокупность двухкатушечных зондов, образованных всеми парами генераторных и измерительных катушек зонда. Основное преимущество метода ИК состоит в том, что при его выполнении нет необходимости прямом электрическом контакте между измерительным зондом и горной породой, следовательно, ИК эффективен при изучении скважин заполненных непроводящими буровыми растворами на нефтяной основе. 

   Оценка качества. 

  Допустимая погрешность измерений проводимости - 10% от измеряемой величины.

  Различие измерения “нуля в воздухе” до и после каротажа - не более 3%.

  Кажущиеся удельные сопротивления плотных глин, полученные по активной и реактивной составляющим индукционного каротажа не должны различаться более чем на 10%.

  Кажущееся сопротивление плотных глин по данным индукционного каротажа должно быть примерно равно показаниям зонда А8,0M1,0N БКЗ.

  Кажущееся сопротивление Кошайских глин ~2-2,5 Ом*м.

  Проводимость Баженовских глин составляет примерно 10-20 мСм/м.

  Для пересчета проводимости, полученной по данным индукционного каротажа в сопротивление необходимо пользоваться палетками (либо формулами пересчета) составленными для конкретной аппаратуры.

  Методические приемы, повышающие геологическую эффективность ИК следующие:

  • диаграммы ИК должны быть только высокого качества;
  • в выявленных или уже известных перспективных интервалах запись ИК дублируется в масштабе 1:200 для сравнения этих данных с материалами ГИС, которые будут получены в дальнейшем при детальных исследованиях;
  • масштаб регистрации основной кривой (1:1) применяется 10 мСм/см с соотношением вспомогательных  масштабов как 1:2:5, т.е. 20 мСм/см и 50 мСм/см соответственно. При записи диаграмм ИК обеспечивается линейный по электрической проводимости масштаб регистрации.

  Оптимальным для разреза Западной Сибири является зонд ИК размером 1м (6Ф1). 

  Для проведения индукционного каротажа используются следующие скважинные приборы:

  • АИК-5, АИК-5М.
 
 

  АИК-5, АИК-5М. 

  Назначение. 

  Аппаратура индукционного каротажа АИК-5 (АИК-5М) предназначена для геофизических исследований нефтяных и газовых скважин методом электромагнитного (индукционного) каротажа, с одновременной регистрацией активной (шифр параметра CILA) и реактивной (шифр параметра CILR) составляющих сигнала. 

  Данные по аппаратуре. 

  Скважинный прибор АИК-5 рассчитан на работу в скважинах при наибольшем значении температуры окружающей среды 150°С и наибольшем гидростатическом давлении 150 MПa.

  Аппаратура работает в комплексе с трехжильным грузонесущим геофизическим кабелем типа КГ 3-60-180-1 длиной до 7000м.

  Зонд индукционного каротажа - 7И1,6.

  Количество измерительных каналов - 2.

  Диапазон измерений активной составляющей кажущейся удельной электрической проводимости - от 5 до 300 мСм/м, диапазон измерений реактивной составляющей кажущейся удельной электрической проводимости - от 10 до 600 мСм/м.  С учетом затухания сигнала на высоких частотах (скин-эффекта) это соответствует диапазону удельной электрической проводимости горных пород по активной составляющей от 5 до 1000 мСм/м, по реактивной составляющей от 60 до 2000 мСм/м.

  Рабочая частота генератора скважинного прибора - (160± 1,0) кГц.

  Питание скважинной аппаратуры осуществляется от стабилизированного источника тока постоянным током силой (90± 3) мА (при работе с наземным пультом АИК-5 сила тока (150± 5) мА).

  Длина скважинного прибора - 3500 мм.

  Диаметр АИК-5 - 90 мм.

  Диаметр АИК-5М - 75 мм.

  Масса - 60 кг.

  Пересчет значений удельной электрической проводимости, полученной по результатам измерений, в удельное электрическое сопротивление производится с помощью палетки:

    

  Рис. 12.  Палетка учета влияния скин-эффекта 

  7. Кавернометрия. Профилеметрия. 

  Измерение диаметра ствола скважины относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в интервалах стандартного каротажа, по всему открытому стволу.

  Кавернометрия обеспечивает высокое вертикальное расчленение разреза (могут выделятся прослои толщиной до 0,2-0,3 м), ее показания против пласта в основном свободны от влияния вмещающих пород.

  Кавернометрия обеспечивает выделение проницаемых пород по сужению диаметра ствола скважины, вследствие образования глинистой корки, которая является результатом проникновения фильтрата промывочной жидкости в проницаемые пласты.

  Кавернометрия обеспечивает выделение размытых участков стволов скважин (каверны), которые являются в большинстве случаев прямыми признаками пластичных глин (покрышек), а в ряде случаев признаками порово-трещинных зон.

  Физические основы метода.

  В разрезе различной литологии фактический диаметр скважины не всегда является номинальным и может быть больше или меньше диаметра долота. Фактический диаметр скважины измеряется каверномером, который представляет из себя четыре рычага, прижатых к стенке скважины. По отклонениям этих рычагов можно рассчитать диаметр скважины в двух взаимно перпендикулярных плоскостях, а также ее средний диаметр.

  Оценка качества.

  Погрешность измерений при определении диаметра скважин не должна превышать 1,0 см.

  На коллекторах обычно наблюдается уменьшение диаметра из-за глинистой корки примерно на 1-2 см.

  На плотных глинах регистрируемый диаметр скважины равен диаметру долота.

  Кривые отклонения рычагов каверномера (радиусы) могут иметь синусоидальную форму, обусловленную вращением прибора в скважине. При этом кривые профилей должны регистрировать реальный диаметр скважины (см.рис.13). 

  

  Рис.13. Пример записи диаграммы кавернометрии 

        Масштаб регистрации основной кривой КВ применяется 2 см/см с соотношением вспомогательных масштабов как 1:2:4, т.е. 4 см/см и 8 см/см, соответственно.

        Замена диаграмм КВ на записи профилемером нецелесообразна ввиду сглаженности кривых профилемера и меньшей контрастности при выделении литостратиграфических границ.

  Для проведения кавернометрии и профилеметрии используются следующие скважинные приборы:

        -     ЭК-1 (см. БК);

  • СКПД;
  • СКП-1;
  • ПТС-4.
 
 
 
 
 

  СКПД-3. 

  Назначение. 

  Каверномер-профилемер скважинный СКПД-3 предназначен для одновременного измерения значений двух взаимно перпендикулярных поперечных размеров (диаметров) ствола скважины и их полусуммы (среднего диаметра) для нефтяных и газовых скважин. 

  Данные по аппаратуре. 

  Скважинный прибор СКПД-3 рассчитан на работу в скважинах при наибольшем значении температуры окружающей среды 180°С и наибольшем гидростатическом давлении 120 MПa.

  Аппаратура работает в комплексе с трехжильным грузонесущим геофизическим кабелем типа КГ 3-60-180-1 длиной до 8000м.

  При проведении ГИС на станции МЕГА ведется регистрация полусуммы – среднего диаметра (шифр параметра CALI) и одного диаметра (шифр параметра С2), второй диаметр (С1) рассчитывается по формуле:

  C1 = (2*CALI) – C2

  Диапазон измеряемых диаметров от 100 до 760 мм.

  Управление измерительными рычагами многократное по команде с поверхности. Время раскрытия (закрытия) рычагов не более 2 мин.

  Усилие прижатия каждого рычага к стенке скважины на менее 60 Н (при измерении диаметра 100 мм) и не более 200 Н (при измерении диаметра 760 мм). 

  Ток питания прибора постоянный 50±10 мА.

  Масса прибора - 76 кг.

  Длина прибора - 3426 мм.

  Диаметр прибора - 80 мм.

  ПТС-4

  Назначение 

  Профилемер трубный скважинный ПТС-4 предназначен для исследования технического состояния обсадных колонн нефтяных и газовых скважин методом одновременного измерения расстояний (радиусов) от оси скважинного прибора до  опорных поверхностей измерительных рычагов. 

  Данные по аппаратуре 

Информация о работе Геофизические методы исследования скважин и скваженная аппаратура