Автор работы: Пользователь скрыл имя, 15 Октября 2012 в 18:18, шпаргалка
Предмет и методы геофизики ландшафта. Редукционизм.
Системный подход - методологическая основа геофизики ландшафта.
Геосистемы с вертикальными и горизонтальными связями. Принцип дополнительности (по В.Н.Солнцеву).
Понятие пространства-времени в физической географии.
“Предистория” геофизики ландшафта. Работы А.Гумбольдта, А.И.Воейкова, В.М.Дэвиса, В.И.Вернадского.
Закон квантитативной компенсации в функциях биосферы А.Л.Чижевского.
Значение работ А.А.Григорьева и М.И.Будыко и Д.Л.Арманда для развития геофизического направления в географии.
Значение идей Г.Ф.Хильми для геофизики ландшафта.
“Энергетический потенциал ландшафта”. Гелиотермическая и геотермическая зоны.
Геофизика ландшафта
Вопросы
1. Предмет и методы геофизики ландшафта. Редукционизм
Геофизика ландшафта - направление в комплексной физической географии, изучающее природно-территориальные комплексы как функционально-целостные объекты, физическую сторону взаимодействия компонентов геосистем, их метаболизм со средой, пространственно-временную организацию материи на уровне ландшафтной сферы Земли. Традиционная задача физической географии - анализ факторов пространственной дифференциации и формирования геосистем (в том числе анализ физических полей) - имеет также географический аспект.
Геофизика ландшафтов имеет физические методы, но географические задачи и проблематику. Она рассматривает природные процессы в аспектах - вещественном, энергетическом и информационном. Ведущий ее метод - балансовый, который обычно используется сопряженно со сравнительным географическим. В настоящее время геофизические методы изучения ландшафтов тесно взаимодействуют с аэрокосмическими. По форме организации экспериментальных работ геофизика ландшафта базируется, прежде всего, на стационарных и полустационарных исследованиях.
ПТК обладают запаса свободной энергии, которая представлена различными видами - химической, механической, тепловой. Как открытые системы они получают энергию из внешней среды. Рассмотрение “судьбы” этой энергии в границах территориально-целостных систем - одна из важнейших задач геофизики ландшафта.
Направления геофизики ландшафта:
Основной принцип - редукционизм, т. е. перенос методов одной науки в другую, в данном случае, методов физики в физическую географию. Существуют и специфические методы геофизики ландшафтов, например, балансовый метод.
Геометрическая размерность - число измерений геометрической фигуры. Физическая размерность - выражение, показывающее отношение данной величины к первичным физическим величинам (L, t, m). Географическая размерность (В.Б.Сочава) - ранг геосистемы:
Географические системы, в отличие от большинства физических, многоразмерны. Кроме того, многие величины в географии могут быть постоянными в пространстве, но переменными во времени и наоборот. Все это делает геофизические исследования очень сложными.
Основные величины и единицы измерения:
2. Системный подход - методологическая основа геофизики ландшафта
Методологическая основа геофизики ландшафтов - системный подход. Система - набор взаимодействующих элементов. Вывод - системой является все. Системы обладают свойствами, которых нет у их элементов (эмерджентность). Примеры эмерджентных свойств геосистем - климат приземного слоя воздуха, свойства почвы, свойства биоценоза. Ключевым моментом всякого системного исследования является целостность системы.
Термин геосистема ввел в обиход В.Б.Сочава (1963). Геосистемы - открытые динамические системы от фации до географической оболочки в целом, генетически и функционально с ней связанные; природные единства, образованные вещественно-энергетическими компонентами. Геосистема -- это пространственно-временная система географических компонентов, взаимообусловленных в своем размещении и развивающихся как единое целое.
Системообразующий поток - поток, придающий набору элементов черты системы - организованность и функциональную целостность. По системообразующим потока геосистемы делятся на две группы - с преобладанием горизонтальных и с преобладанием вертикальных потоков. Основные вертикальные потоки: гравитационный ток воды, малый бик, миграции почвенных беспозвоночных. Основные горизонтальные потоки - поверхностный и подземный сток, движение ледников, лавин, барханов.
Структура - совокупность устойчивых связей объекта, обусловливающих его целостность. А.Д.Арманд отмечал, что при изучении геосистем важно различать прямые и обратные связи.
3. Геосистемы с вертикальными и горизонтальными связями. Принцип дополнительности (по В.Н.Солнцеву)
Интеграционные механизмы геосистем - системообразующие потоки вещества-энергии, обладающие свойством наибольшей активности и устойчивости. Системообразующий поток - поток, придающий набору элементов черты системы - организованность и функциональную целостность.
По системообразующим потока геосистемы делятся на две группы - с преобладанием горизонтальных и с преобладанием вертикальных потоков. Основные вертикальные потоки: гравитационный ток воды, малый бик, миграции почвенных беспозвоночных. Основные горизонтальные потоки - поверхностный и подземный сток, движение ледников, лавин, барханов.
Существует несколько основных моделей геосистем. Геосистема первого рода - фация, характеризуется преобладанием вертикальных поток вещества и энергии. Геосистемами второго рода называются структурные модели строения природной среды на региональном уровне (ландшафт - местности - урочища - подурочища - фации). В основе существования геосистем третьего рода лежит однонаправленный поток вещества и энергии (бассейны рек I-III порядков, ледники, барханы) - системы с горизонтальными связями. Такая система существует там, где находит проявление системообразующий поток.
В.Н.Солнцевым были отмечены два фундаментальных свойства геосистемной структуры - мозаичность и ориентированность. Земной поверхности свойственна мозаичная структура, обусловленная в первую очередь рельефом. Каждый из элементов этой мозаики имеет генетическую целостность. Кроме того, ландшафтной оболочке свойственна ориентированность, зависящая от направления потоков. Ориентированность заключается в упорядоченности отдельных структур, что выступает проявлением действия физических полей (гравитационного и инсоляционного) и наиболее активного потока вещества (системообразующего фактора). Как доказал В.Н.Солнцев (ФГМиГ, 1976), мозаичность более характерна для систем с вертикальными связями, а ориентированность - для систем с горизонтальными связями. Но оба эта свойства являются дополнительными (комплементарными) и проявляются на любом масштабном уровне ПТК.
Позднее К.К.Марков и другие ученые вывели 4 вида цикличности процессов:
4. Понятие пространства-времени в физической географии
Изучение физических основ пространственно-временной организации геосистем - одна из важнейших задач геофизика ландшафта. На протяжении длительного периода времени основное внимание обращалось на развитие хорологической (пространственной) концепции - Кант, Риттер, Геттнер. Наиболее полно разработаны методы пространственного анализа (например, при ландшафтном картографировании). Наибольшего развития пространственный подход достиг в комплексном физико-географическом районировании. В.Н.Солнцев выделил два фундаментальных свойства пространственной структуры геосистем - мозаичность и ориентированность (см. вопрос №3).
Развитие функционально-динамического ландшафтоведения дало импульс для разработки проблемы хроноорганизации природных процессов. К числу важных характеристик геосистем относятся указания ее возраста, минимального, характерного и полного времени. Возраст геосистемы (по Сочаве) - продолжительность существования геосистемы в качестве определенного структурно-динамического типа. В условиях нестабильной внешней среды формируются различные инварианты геосистем, их модификации со своей структурой и режимами функционирования. Их возраст может измеряться всего несколькими десятилетиями. В условиях стабильной внешней среды возраст геосистем может совпадать с возрастом литогенной основы.
Минимальное время - длительного единичного события или элементарного состояния геосистемы. Характерное время (по А.Д.Арманду) - длительность протекания процессы возвращения системы в квазиисходное положение или период одного колебания для колебательных систем. Полное время - совокупность характерных времен, некий период, за который реализуются все существенные состояния объекта в рамках его инвариантности. Фоновое время - совокупность различных инвариантов ПТК.
Стекс - суточный вариант состояние и функционирования геосистемы, связанный с погодными условиями, т.е. определяемый температурой, увлажнением, ветровым режимом и влажностью воздуха и выражающееся в активности основных природных процессов (фотосинтез, инофильтрация, деятельность почвенной фауны и др.). Термин был предложен Н.Л.Беручашвили. Типы стексов соответствуют типам погоды. Их всего 15. Стексы иногда объясняются в более крупные группы. Доказано, что стекс - элементарное ландшафтое время (также как фация - элементарное ландшафтое пространство).
Циклы развития ландшафтов большой длительности (более 100 лет) изучают по спилам деревьев, алювиальным отложениям, методом спорово-пыльцевого анализа. Принципиально иной метод - метод эргодичности, пользуясь которым, зная пространственные закономерности данного явления, можно переносить эти закономерности на временной аспект этого явления.
5. “Предистория” геофизики ландшафта. Работы А.Гумбольдта, А.И.Воейкова, В.М.Дэвиса, В.И.Вернадского.
В развитии любой науки существует пять этапов:
В 17 в. Варрениус впервые указал на тесную связь географии и физики. Но впервые использовал физические методы для объяснения географических явлений А.Гумбольдт (1804). Основателем геофизики ландшафта считается А.И.Воейков (1842-1916), придумавший метод балансов (1880-е гг.).
В 1899 г. американский геоморфолог В.М.Дэвис (1850-1936) разработал теорию географических циклов, в которой ввел анализ природных явлений с системных физических позиций. Он впервые стал изучать географические объекты в развитии, в какой-то мере реализовав идею эргодичности. С помощью своей теории Дейвис создал модель пенепленизации гор, позднее доказав, что скорость ее зависит от гидротермического режима и тектонической активности.
В.И.Вернадский изучал массоэнергообмен (метаболизм) в биосфере, ее организованность и геохимическую энергетику. В 1930-х гг. он обратил внимание на неодинаковое воздействие разных типов солнечной радиации на живые организмы. Энергию, с помощью которой растения осуществляют фотосинтез, он назвал ФАР (фотосинтетически активная радиация). Кроме того, Вернадский заложил основы трофической экологии и доказал, что энтропия в биосфере убывает.